日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方體,則下列四個(gè)命題:

          ①點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與直線所成角的大小不變

          ②點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與平面所成角的大小不變

          ③點(diǎn)在直線上運(yùn)動(dòng)時(shí),二面角的大小不變

          ④點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積不變

          其中的真命題是

          A.①③B.③④C.①②④D.①③④

          【答案】D

          【解析】

          ①由與平面的位置關(guān)系判斷直線與直線所成角的大小變化情況;

          ②考慮與平面所成角的大小,然后判斷直線與平面所成角的大小是否不變;

          ③根據(jù)以及二面角的定義判斷二面角的大小是否不變;

          ④根據(jù)線面平行的性質(zhì)以及三棱錐的體積計(jì)算公式判斷三棱錐的體積是否不變.

          ①如下圖,連接,

          因?yàn)?/span>,所以平面,

          所以,所以直線與直線所成角的大小不變;

          ②如下圖,連接,記到平面的距離為,

          設(shè)正方體棱長(zhǎng)為,所以,所以,

          又因?yàn)?/span>,所以,

          所以與平面所成角的正弦值為:,

          又因?yàn)?/span>,所以,

          所以所以與平面所成角的正弦值為:

          顯然,所以直線與平面所成角的大小在變化;

          ③因?yàn)?/span>,所以四點(diǎn)共面,又在直線上,所以二面角的大小不變;

          ④因?yàn)?/span>平面,平面,所以平面,

          所以當(dāng)上運(yùn)動(dòng)時(shí),點(diǎn)到平面的距離不變,所以三棱錐的體積不變.

          所以真命題有:①③④.

          故選:D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)判斷的單調(diào)性;

          (2)求函數(shù)的零點(diǎn)的個(gè)數(shù);

          (3),若函數(shù)0,內(nèi)有極值,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為,點(diǎn),、兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),并且滿足,,動(dòng)點(diǎn)的軌跡為曲線.

          (1)求動(dòng)點(diǎn)的軌跡方程;

          (2)作曲線的任意一條切線(不含軸),直線與切線相交于點(diǎn),直線與切線、軸分別相交于點(diǎn)與點(diǎn),試探究的值是否為定值,若為定值請(qǐng)求出該定值;若不為定值請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)分別在、處取得極小值、極大值.平面上點(diǎn)、的坐標(biāo)分別為、,該平面上動(dòng)點(diǎn)滿足,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).

          (Ⅰ)求點(diǎn)、的坐標(biāo);

          (Ⅱ)求動(dòng)點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知曲線的方程為,集合,若對(duì)于任意的,都存在,使得成立,則稱曲線曲線.下列方程所表示的曲線中,曲線的有__________(寫出所有曲線的序號(hào))

          ;②;③;④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求證:

          (2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列的前項(xiàng)和是.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若,求數(shù)列的前n項(xiàng)和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的下頂點(diǎn)為,右焦點(diǎn)為,離心率為.已知點(diǎn)是橢圓上一點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),原點(diǎn)到直線的距離為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線與圓:相交于點(diǎn)(異于點(diǎn)),設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線與橢圓相交于點(diǎn)(異于點(diǎn)).①若,求的面積;②設(shè)直線的斜率為,直線的斜率為,求證:是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案