日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對(duì)于給定的正整數(shù),若數(shù)列滿足對(duì)任意正整數(shù)恒成立,則稱數(shù)列數(shù)列,若正數(shù)項(xiàng)數(shù)列,滿足:對(duì)任意正整數(shù)恒成立,則稱數(shù)列;

          1)已知正數(shù)項(xiàng)數(shù)列數(shù)列,且前五項(xiàng)分別為、、,求的值;

          2)若為常數(shù),且數(shù)列,求的最小值;

          3)對(duì)于下列兩種情形,只要選作一種,滿分分別是 分,②分,若選擇了多于一種情形,則按照序號(hào)較小的解答記分.

          ① 證明:數(shù)列是等差數(shù)列的充要條件為“既是數(shù)列,又是數(shù)列”;

          ②證明:正數(shù)項(xiàng)數(shù)列是等比數(shù)列的充要條件為“數(shù)列既是數(shù)列,又是數(shù)列”.

          【答案】1;(2;(3)①證明見解析;②證明見解析.

          【解析】

          1)根據(jù)定義得出,再由可求出的值;

          2)根據(jù)定義得出,化簡得出,然后利用兩角和與差的正弦公式化簡得出,求出的值,由此可得出的最小值;

          3)①利用等差中項(xiàng)的性質(zhì)可推出充分性成立,由數(shù)列數(shù)列和數(shù)列的定義推導(dǎo)出,結(jié)合等差中項(xiàng)的定義可得知必要性成立;

          ②利用等比中項(xiàng)的定義可推出充分性成立,由數(shù)列數(shù)列和數(shù)列的定義推導(dǎo)出,利用等比中項(xiàng)的定義可得知必要性成立.

          1)由于正項(xiàng)數(shù)列數(shù)列,則,,解得;

          2)由于數(shù)列數(shù)列,對(duì)任意的,,

          則有

          化簡得,

          由兩角和與差的正弦公式可得,

          上述等式對(duì)任意的的正整數(shù)恒成立,所以,,

          ,解得正數(shù)的最小值為;

          3)①充分性:若數(shù)列是等差數(shù)列,當(dāng)時(shí),由等差中項(xiàng)的性質(zhì)可得,,

          上述等式全部相加得

          ,則數(shù)列數(shù)列.

          當(dāng)時(shí),由等差中項(xiàng)的性質(zhì)可得,,

          上述等式全部相加得,

          則數(shù)列數(shù)列.

          必要性:若數(shù)列數(shù)列,當(dāng)時(shí),

          ,(i

          若數(shù)列數(shù)列,則,(ii

          ,(iii

          iiiiii)得,,化簡得.

          因此,當(dāng)時(shí),數(shù)列從第三項(xiàng)開始成等差數(shù)列,設(shè)公差為.

          注意到,

          可得,

          因?yàn)?/span>,

          可得,

          即數(shù)列項(xiàng)也滿足等差數(shù)列的通項(xiàng)公式,所以,數(shù)列是等差數(shù)列.

          因此,數(shù)列是等差數(shù)列的充要條件為“既是數(shù)列,又是數(shù)列”;

          ②充分性:若數(shù)列是等比數(shù)列,當(dāng)時(shí),由等比中項(xiàng)的性質(zhì)可得,,,上述等式全部相乘得,

          所以,,則等比數(shù)列數(shù)列;

          若數(shù)列是等比數(shù)列,當(dāng)時(shí),由等比中項(xiàng)的性質(zhì)可得,,上述等式全部相乘得,所以,,

          則等比數(shù)列數(shù)列;

          必要性:若數(shù)列數(shù)列,當(dāng)時(shí),則,(iv

          若數(shù)列數(shù)列,則,(v,(vi

          ivvvi)得,,,化簡得.

          因此,當(dāng)時(shí),數(shù)列從第三項(xiàng)開始成等比數(shù)列,設(shè)公比為.

          注意到,可得

          因?yàn)?/span>,,

          即數(shù)列項(xiàng)也滿足等比數(shù)列的通項(xiàng)公式,所以,數(shù)列是等比數(shù)列.

          因此,正數(shù)項(xiàng)數(shù)列是等比數(shù)列的充要條件為“數(shù)列既是數(shù)列,又是數(shù)列”.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓,左頂點(diǎn)為,經(jīng)過點(diǎn),過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).

          1)求橢圓的方程;

          2)已知的中點(diǎn),,證明:對(duì)于任意的都有恒成立;

          3)若過點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)據(jù),,,是上海普通職(,)個(gè)人的年收入,設(shè)這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說法正確(

          A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

          B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

          C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

          D.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差可能不變

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于定義在上的函數(shù),如果存在兩條平行直線,使得對(duì)于任意,都有恒成立,那么稱函數(shù)是帶狀函數(shù),若,之間的最小距離存在,則稱為帶寬.

          1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;

          2)求證:函數(shù))是帶狀函數(shù);

          3)求證:函數(shù))為帶狀函數(shù)的充要條件是.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動(dòng)型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動(dòng)型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.

          1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;

          2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某社會(huì)機(jī)構(gòu)為了調(diào)查對(duì)手機(jī)游戲的興趣與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下列聯(lián)表:

          1)根據(jù)列聯(lián)表,能否有的把握認(rèn)為對(duì)手機(jī)游戲的興趣程度與年齡有關(guān)?

          2)若已經(jīng)從40歲以上的被調(diào)查者中用分層抽樣的方式抽取了10名,現(xiàn)從這10名被調(diào)查者中隨機(jī)選取3名,記這3名被選出的被調(diào)查者中對(duì)手機(jī)游戲很有興趣的人數(shù)為,求的分布列及數(shù)學(xué)期望.

          附:

          參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線過點(diǎn),且漸近線方程為,直線與曲線交于點(diǎn)、兩點(diǎn).

          (1)求雙曲線的方程;

          (2)若直線過原點(diǎn),點(diǎn)是曲線上任一點(diǎn),直線,的斜率都存在,記為、,試探究的值是否與點(diǎn)及直線有關(guān),并證明你的結(jié)論;

          (3)若直線過點(diǎn),問在軸上是否存在定點(diǎn),使得為常數(shù)?若存在,求出點(diǎn)坐標(biāo)及此常數(shù)的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù),若函數(shù)有4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,是等腰直角三角形,,D,E分別是AC,AB上的點(diǎn),,沿DE折起,得到如圖2所示的四棱錐,使得

          圖1 圖2

          (1)證明:平面平面BCD;

          (2)求與平面所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案