【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.在平面直角坐標系中,設(shè)A(﹣3,0),B(3,0),動點M滿足=2,則動點M的軌跡方程為()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差
,首項
,且
成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和
;
(3)比較與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足
(
),且
.
(1)求的解析式;
(2)若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實數(shù)
的取值范圍;
(3)若關(guān)于的方程
有區(qū)間
上有一個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:
①“若,則
”的逆否命題為真命題
②“”是“函數(shù)
在區(qū)間
上為增函數(shù)”的充分不必要條件
③若為假命題,則
,
均為假命題
④對于命題:
,
,則
為:
,
其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域為的單調(diào)函數(shù)
滿足
,且
,
(1)求,
;
(2)判斷函數(shù)的奇偶性,并證明;
(3)若對于任意都有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 且f(x)的最小值為0.
(1)求a的值;
(2)若數(shù)列滿足a1=1,an+l=f(an)+2(n∈Z+),記Sn=[a1]+[a2]+…+[an],[m]表示不超過實數(shù)m的最大整數(shù),求Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點的直線與圓
相交于
兩點,過點
且與
垂直的直線與圓
的另一交點為
.
(1)當點坐標為
時,求直線
的方程;
(2)求四邊形面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在區(qū)間
上的奇函數(shù),且
,若對于任意的m,
有
.
(1)判斷函數(shù)的單調(diào)性(不要求證明);
(2)解不等式;
(3)若對于任意的
,
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com