日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
          (Ⅰ)求點(diǎn)M的軌跡方程;
          (Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
          求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).
          (Ⅰ));(Ⅱ) .

          試題分析:(Ⅰ)設(shè)點(diǎn) 的坐標(biāo)為 則, ,化簡(jiǎn)可得軌跡方程.
          (Ⅱ)設(shè)出直線PE、PF的點(diǎn)斜式方程,分別求出它們與圓)相切條件下與曲線C的另一交個(gè)交點(diǎn)Q、R.的坐標(biāo),寫(xiě)出直線的方程,點(diǎn)到直線的距離公式可求的底邊上的高.進(jìn)而得出面積的表達(dá)式,再探索用基本不等式求該式最值的方法.
          試題解析:(Ⅰ)設(shè)點(diǎn)       2分
          整理得點(diǎn)M所在的曲線C的方程:)        3分

          (Ⅱ)由題意可得點(diǎn)P()             4分
          因?yàn)閳A的圓心為(1,0),
          所以直線PE與直線PF的斜率互為相反數(shù)           5分
          設(shè)直線PE的方程為,
          與橢圓方程聯(lián)立消去,得:
          ,         6分
          由于1是方程的一個(gè)解,
          所以方程的另一解為            7分
          同理                        8分
          故直線RQ的斜率為
          =    9分
          把直線RQ的方程代入橢圓方程,消去整理得
          所以       10分
          原點(diǎn)O到直線RQ的距離為              11分
             12分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知曲線.
          (1)若曲線是焦點(diǎn)在軸上的橢圓,求的取值范圍;
          (2)設(shè),過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為直角,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的離心率為且與雙曲線有共同焦點(diǎn).
          (1)求橢圓的方程;
          (2)在橢圓落在第一象限的圖像上任取一點(diǎn)作的切線,求與坐標(biāo)軸圍成的三角形的面積的最小值;
          (3)設(shè)橢圓的左、右頂點(diǎn)分別為,過(guò)橢圓上的一點(diǎn)軸的垂線交軸于點(diǎn),若點(diǎn)滿足,,連結(jié)于點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過(guò)點(diǎn)
          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓)的右焦點(diǎn)為,離心率為.
          (Ⅰ)若,求橢圓的方程;
          (Ⅱ)設(shè)直線與橢圓相交于,兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
          (I)求橢圓C的方程;
          (II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)已知橢圓的離心率為,在橢圓C上,A,B為橢圓C的左、右頂點(diǎn).
          (1)求橢圓C的方程:
          (2)若P是橢圓上異于A,B的動(dòng)點(diǎn),連結(jié)AP,PB并延長(zhǎng),分別與右準(zhǔn)線相交于M1,M2.問(wèn)是否存在x軸上定點(diǎn)D,使得以M1M2為直徑的圓恒過(guò)點(diǎn)D?若存在,求點(diǎn)D的坐標(biāo):若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖平面直角坐標(biāo)系中,橢圓的離心率,分別是橢圓的左、右兩個(gè)頂點(diǎn),圓的半徑為,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,在軸的上方交橢圓于點(diǎn).則       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知O為坐標(biāo)原點(diǎn),P是曲線上到直線距離最小的點(diǎn),且直線OP是雙曲線 的一條漸近線。則的公共點(diǎn)個(gè)數(shù)是(  )
          A.2B.1
          C.0D.不能確定,與、的值有關(guān)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案