日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓)的右焦點(diǎn)為,離心率為.
          (Ⅰ)若,求橢圓的方程;
          (Ⅱ)設(shè)直線與橢圓相交于兩點(diǎn),分別為線段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
          (Ⅰ);(Ⅱ)

          試題分析:(Ⅰ)由已知橢圓的半焦距,又,根據(jù)離心率的定義得,則,所以,從而得出所求橢圓的方程為.
          (2)根據(jù)題意可設(shè)點(diǎn)、的坐標(biāo)分別為,聯(lián)立直線方程與橢圓方程,消去,則,,因?yàn)樵c(diǎn)在圓上,所以,根據(jù)三角形中位線性質(zhì)可知四邊形為矩形,所以,又,所以,,因此,即,從而可整理得,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032634950727.png" style="vertical-align:middle;" />,所以,即,從而,所以,因此,解得.(如圖所示)

          試題解析:(Ⅰ)由題意得,得.                            2分
          結(jié)合,解得.                         3分
          所以,橢圓的方程為.                                4分
          (Ⅱ)由 得.
          設(shè).
          所以,                               6分
          依題意,,
          易知,四邊形為平行四邊形,
          所以,                                              7分
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032635761812.png" style="vertical-align:middle;" />,
          所以.        8分
          ,                                 9分
          將其整理為 .               10分
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032634950727.png" style="vertical-align:middle;" />,所以,.          11分
          所以,即.                     13分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
          (1)求橢圓C的方程;
          (2)過點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
          對(duì)稱點(diǎn)為A1.求證:直線A1B過x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過點(diǎn)
          (Ⅰ)求橢圓方程;
          (Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),若,求△的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
          (Ⅰ)求點(diǎn)M的軌跡方程;
          (Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
          求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓經(jīng)過點(diǎn),離心率為
          (1)求橢圓C的方程:
          (2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1,k2,當(dāng)k1·k2最大時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M
          滿足.
          (1)求橢圓的方程;
          (2)若直線L:y=與橢圓恒有不同交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          直線與曲線的交點(diǎn)個(gè)數(shù)是       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知過拋物線焦點(diǎn)的直線與拋物線相交于兩點(diǎn),若,則    .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          以拋物線的焦點(diǎn)為圓心,且與雙曲線的兩條漸近線都相切的圓的方程為        .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案