【題目】已知橢圓的離心率為
,
,
為橢圓
的左、右焦點(diǎn),
為橢圓
上的任意一點(diǎn),
的面積的最大值為1,
、
為橢圓
上任意兩個(gè)關(guān)于
軸對(duì)稱的點(diǎn),直線
與
軸的交點(diǎn)為
,直線
交橢圓
于另一點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線過(guò)定點(diǎn).
【答案】(1);(2)見解析.
【解析】試題分析:(1)由離心率及的面積的最大值為1,即可求得
,
,從而求得橢圓
的標(biāo)準(zhǔn)方程;(2)設(shè)
,,且
,由題意得
且直線
的斜率必存在,設(shè)
:
,與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理,得
,即可表示直線
:
,根據(jù)對(duì)稱性可知直線
過(guò)的定點(diǎn)必在
軸上,從而求出定點(diǎn)坐標(biāo).
試題解析:(1)∵當(dāng)M為橢圓C的短軸端點(diǎn)時(shí),的面積的最大值為1
∴
∴
∵,
∴
∴橢圓C標(biāo)準(zhǔn)方程為:
(2)設(shè),且
,
∵
∴
由題意知的斜率必存在,設(shè)
:
,代入
得
,由
得
,
.
∵
∴斜率必存在,
:
由對(duì)稱性易知直線過(guò)的定點(diǎn)必在
軸上,則當(dāng)
時(shí),得
,即在
的條件下,直線AE過(guò)定點(diǎn)(1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:
的焦點(diǎn)
與橢圓
:
的一個(gè)焦點(diǎn)重合,點(diǎn)
在拋物線上,過(guò)焦點(diǎn)
的直線
交拋物線于
、
兩點(diǎn).
(Ⅰ)求拋物線的方程以及
的值;
(Ⅱ)記拋物線的準(zhǔn)線與
軸交于點(diǎn)
,試問(wèn)是否存在常數(shù)
,使得
且
都成立?若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,
、
分別為橢圓
的左、右頂點(diǎn),點(diǎn)
滿足
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線經(jīng)過(guò)點(diǎn)
且與
交于不同的兩點(diǎn)
、
,試問(wèn):在
軸上是否存在點(diǎn)
,使得直線
與直線
的斜率的和為定值?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)
.
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段
上的動(dòng)點(diǎn),若線段
長(zhǎng)的最小值為
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得
,又
,因此
得
平面
,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段
長(zhǎng)的最小時(shí),
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形,
,
∴為正三角形.又
為
的中點(diǎn),∴
.
又,因此
.
∵平面
,
平面
,∴
.
而平面
,
平面
且
,
∴平面
.又
平面
,∴
.
(2)如圖, 為
上任意一點(diǎn),連接
,
.
當(dāng)線段長(zhǎng)的最小時(shí),
,由(1)知
,
∴平面
,
平面
,故
.
在中,
,
,
,
∴,
由中,
,
,∴
.
由(1)知,
,
兩兩垂直,以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又
,
分別是
,
的中點(diǎn),
可得,
,
,
,
,
,
,
所以,
.
設(shè)平面的一法向量為
,
則因此
,
取,則
,
因?yàn)?/span>,
,
,所以
平面
,
故為平面
的一法向量.又
,
所以
.
易得二面角為銳角,故所求二面角的余弦值為
.
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓:
的左頂點(diǎn)為
,上頂點(diǎn)為
,直線
與直線
垂直,垂足為
點(diǎn),且點(diǎn)
是線段
的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點(diǎn),點(diǎn)
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)經(jīng)過(guò)點(diǎn)
,且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線:
(
,
)交橢圓
于
、
兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)
,使得以
為直徑的圓恒過(guò)點(diǎn)
.若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直角梯形中,
,
、
分別是
、
上的點(diǎn),且
,
.沿
將四邊形
翻折至
,連接
、
、
,得到多面體
,且
.
(Ⅰ)求多面體的體積;
(Ⅱ)求證:平面⊥平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為
類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到
類工人生產(chǎn)能力的莖葉圖(左圖),
類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問(wèn)類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)
類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的
列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓過(guò)
,
兩點(diǎn),且圓心
在直線
上.
(1)求圓的方程;
(2)若直線過(guò)點(diǎn)
且被圓
截得的線段長(zhǎng)為
,求
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com