日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          1)當(dāng)時(shí),求函數(shù)上的最小值;

          2)若對(duì)任意的恒成立.試求實(shí)數(shù)a的取值范圍;

          3)若時(shí),求函數(shù)上的最小值.

          【答案】1;(2;(3

          【解析】

          1)當(dāng)時(shí),利用基本不等式即可求得最小值;

          2)由題意可得上恒成立,根據(jù)二次函數(shù)的圖象與性質(zhì)求出的最大值即可得解;

          3)先證明單調(diào)遞減,在單調(diào)遞增,對(duì)、兩種情況進(jìn)行分類討論分析函數(shù)的單調(diào)性從而求出最值.

          1)當(dāng)時(shí),,

          當(dāng)時(shí),,

          當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

          所以的最小值為2

          2)根據(jù)題意可得上恒成立,

          等價(jià)于上恒成立,

          因?yàn)?/span>上單調(diào)遞增,

          上單調(diào)遞減,所以,

          所以;

          3,設(shè),

          ,

          ,即,

          單調(diào)遞減,同理可證單調(diào)遞增,

          當(dāng)時(shí),,函數(shù)上單調(diào)遞增,

          ;

          當(dāng)時(shí),,函數(shù)上單調(diào)遞減,

          上單調(diào)遞增,

          .

          所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列判斷正確的是( )

          A. 設(shè)是實(shí)數(shù),則“”是“ ”的充分而不必要條件

          B. :“,”則有:不存在,

          C. 命題“若,則”的否命題為:“若,則

          D. ,”為真命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,傾斜角為的直線經(jīng)過橢圓的右焦點(diǎn)且與圓相切.

          (1)求橢圓 的方程;

          (2)若直線與圓相切于點(diǎn),且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積于的面積分別為.

          ①求的最大值;

          ②當(dāng)取得最大值時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.

          (Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);

          假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過樣本估計(jì)該校全體男生的平均身高;

          (Ⅲ)在樣本中,從身高在(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,,.

          (Ⅰ)若點(diǎn)的中點(diǎn),求證:∥平面

          (Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下表:

          (1)求;

          (2)能否有的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?

          附:

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左焦點(diǎn)為,左頂點(diǎn)為,離心率為,點(diǎn) 滿足條件.

          (Ⅰ)求實(shí)數(shù)的值;

          )設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),記的面積分別為,證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)=0時(shí),求實(shí)數(shù)的m值及曲線在點(diǎn)(1, )處的切線方程;

          2)討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓的左右焦點(diǎn)分別為F1,F2,點(diǎn)P 在橢圓上運(yùn)動(dòng), 的最大值為m, 的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案