【題目】在平面直角坐標(biāo)系中,已知直線
的方程為
,曲線
是以坐標(biāo)原點
為頂點,直線
為準(zhǔn)線的拋物線.以坐標(biāo)原點
為極點,
軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求出直線與曲線
的極坐標(biāo)方程:
(2)點是曲線
上位于第一象限內(nèi)的一個動點,點
是直線
上位于第二象限內(nèi)的一個動點,且
,請求出
的最大值.
【答案】(1),
;(2)
【解析】
(1)由拋物線的準(zhǔn)線方程易得拋物線方程,再用,
,
可將直線
與曲線
的直角坐標(biāo)系方程轉(zhuǎn)化為極坐標(biāo)系方程;(2)直接在極坐標(biāo)系下設(shè)點A、B的坐標(biāo),然后計算其比值,求出最大值即可.
(1)因為,所以直線
的極坐標(biāo)系方程為
,
又因為直線為拋物線
的準(zhǔn)線,所以拋物線開口朝右,且
,即
所以曲線的平面直角坐標(biāo)系方程為
,
因為,
所以極坐標(biāo)系方程為;
(2)設(shè),則
,則
,
.
記,則
則
因為,當(dāng)且僅當(dāng)
時取等號
所以
所以取最大值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若曲線與
在點
處有相同的切線,求函數(shù)
的極值;
(2)若時,不等式
在
(
為自然對數(shù)的底數(shù),
)上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓
:
經(jīng)過點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點是橢圓
上的任意一點,射線
與橢圓
交于點
,過點
的直線
與橢圓
有且只有一個公共點,直線
與橢圓
交于
,
兩個相異點,證明:
面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點
,直線
與y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運(yùn)行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關(guān)系:
,其中
.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和
名女志愿者,將這
名志愿者的身高編成如莖葉圖所示(單位:
),若身高在
以上(包括
)定義為“高個子”,身高在
以下(不包括
)定義為“非高個子”。
(Ⅰ)根據(jù)數(shù)據(jù)分別寫出男、女兩組身高的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎(chǔ)上,從這人中選
人,那么至少有一人是“高個子”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,
,
,
分別為
,
邊的中點,以
為折痕把
折起,使點
到達(dá)點
的位置,且
.
(1)證明:平面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)),以直角坐標(biāo)系的原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,求三條曲線
,
,
所圍成圖形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com