設(shè)拋物線C:的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若,求線段
中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點(diǎn)為
時,求
的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線的斜率成等差數(shù)列.
(1) ;(2)
。
(3)顯然直線的斜率都存在,分別設(shè)為
.
點(diǎn)的坐標(biāo)為
.
聯(lián)立方程組得到 ,
,得到
.
解析試題分析:
思路分析:(1) 利用“代入法”。
(2) 聯(lián)立方程組得,
,應(yīng)用弦長公式求
,得到面積。
(3)直線的斜率都存在,分別設(shè)為
.
點(diǎn)的坐標(biāo)為
.
設(shè)直線AB:,代入拋物線得
, 確定
,
,得到
.
解:(1) 設(shè),
,焦點(diǎn)
,則由題意
,即
所求的軌跡方程為,即
(2) ,
,直線
,
由得,
,
,
。
(3)顯然直線的斜率都存在,分別設(shè)為
.
點(diǎn)的坐標(biāo)為
.
設(shè)直線AB:,代入拋物線得
, 所以
,
又,
,
因而,
因而
而,故
.
考點(diǎn):等差數(shù)列,求軌跡方程,直線與拋物線的位置關(guān)系。
點(diǎn)評:中檔題,涉及“弦中點(diǎn)”問題,往往利用“代入法”求軌跡方程。涉及直線與圓錐曲線的位置關(guān)系問題,往往通過聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡化解題過程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的對稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為
,離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為
軸上的動點(diǎn),過點(diǎn)
作直線
與直線
垂直,試探究直線
與橢圓
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓
:
的離心率
,且橢圓C上一點(diǎn)
到點(diǎn)Q
的距離最大值為4,過點(diǎn)
的直線交橢圓
于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)
時,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)在
軸上,離心率
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為的直線
與橢圓
相交于
兩點(diǎn),求證:直線
與
的傾斜角互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓
的左焦點(diǎn)為
,左、右頂點(diǎn)分別為
,上頂點(diǎn)為
,過
三點(diǎn)作圓
(Ⅰ)若線段是圓
的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線
上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于
,交
軸于
,求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線
相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對稱點(diǎn),動點(diǎn)M滿足
. 問是否存在一個定點(diǎn)T,使得動點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線C上任一點(diǎn)到定點(diǎn)(0,)的距離等于它到定直線
的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點(diǎn),且
⊥
,設(shè)M是AB中點(diǎn),問是否存在一定點(diǎn)和一定直線,使得M到這個定點(diǎn)的距離與它到定直線的距離相等.若存在,求出這個定點(diǎn)坐標(biāo)和這條定直線的方程.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為F, 離心率為
, 過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為
.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若, 求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)在拋物線
上.
(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過拋物線上的動點(diǎn)
作拋物線
的兩條切線
、
, 切點(diǎn)為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com