如圖,已知拋物線的焦點在拋物線
上.
(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過拋物線上的動點
作拋物線
的兩條切線
、
, 切點為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線C:的焦點為F,經(jīng)過點F的直線與拋物線交于A、B兩點.
(1)若,求線段
中點M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點為
時,求
的面積;
(3)若M是拋物線C準(zhǔn)線上的點,求證:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)動點到點
的距離等于它到直線
的距離,記點
的軌跡為曲
.
(Ⅰ)求曲線的方程;
(Ⅱ)若點,
,
是
上的不同三點,且滿足
.證明:
不可能為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形中,
分別為四邊的中點,且都在坐標(biāo)軸上,設(shè)
,
.
(Ⅰ)求直線與
的交點
的軌跡
的方程;
(Ⅱ)過圓上一點
作圓的切線與軌跡
交于
兩點,若
,試求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的長軸長為,離心率
.
Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且
OBE與
OBF的面積之比為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過直線y=﹣1上的動點A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點.
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點是離心率為
的橢圓
:
上的一點,斜率為
的直線
交橢圓
于
、
兩點,且
、
、
三點不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的焦點為F,準(zhǔn)線
與x軸的交點為A.點C在拋物線E上,以C為圓心,
為半徑作圓,設(shè)圓C與準(zhǔn)線
交于不同的兩點M,N.
(I)若點C的縱坐標(biāo)為2,求;
(II)若,求圓C的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com