日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},則A∪B= , A∩(RB)=

          【答案】
          【解析】解:∵集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0}={x|0≤x≤4}, ∴RB={x|x<0或x>4},
          ∴A∪B={x|﹣1≤x≤4},A∩(RB)={x|﹣1≤x<0}.
          所以答案是:{x|﹣1≤x≤4},{x|﹣1≤x<0}.
          【考點精析】本題主要考查了交、并、補集的混合運算的相關知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

          1)若圓心也在直線上,過點作圓的切線,求切線方程;

          2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
          (1)求角B的值;
          (2)若b= 且b≤a,求2a﹣c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)= x3﹣ax2+3x+b(a,b∈R).
          (Ⅰ)當a=2,b=0時,求f(x)在[0,3]上的值域.
          (Ⅱ)對任意的b,函數(shù)g(x)=|f(x)|﹣ 的零點不超過4個,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓心在軸非負半軸上,半徑為2的圓C與直線相切.

          (1)求圓C的方程;

          (2)設不過原點O的直線l與圓O:x2+y2=4相交于不同的兩點A,B.①求△OAB的面積的最大值;②在圓C上,是否存在點M(m,n),使得直線l的方程為mx+ny=1,且此時△OAB的面積恰好取到①中的最大值?若存在,求出點M的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是cm2 , 體積是cm3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}滿足:a1= ,an=an12+an1(n≥2且n∈N).
          (Ⅰ)求a2 , a3;并證明:2 ≤an 3 ;
          (Ⅱ)設數(shù)列{an2}的前n項和為An , 數(shù)列{ }的前n項和為Bn , 證明: = an+1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=(ax+1)ex﹣(a+1)x﹣1.
          (1)求y=f(x)在(0,f(0))處的切線方程;
          (2)若x>0時,不等式f(x)>0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點,且PE= PC.

          (Ⅰ)求PE的長;
          (Ⅱ)求證:AE⊥平面PBC;
          (Ⅲ)求二面角B﹣AE﹣D的度數(shù).

          查看答案和解析>>

          同步練習冊答案