日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在多面體,底面是梯形四邊形是正方形,,,,,

          (1)求證平面平面;

          (2)設(shè)為線段上一點(diǎn),,求二面角的平面角的余弦值.

          【答案】(1)見(jiàn)解析;(2).

          【解析】分析:(1)由勾股定理的逆定理可得,;又由條件可得到,于是平面,可得,從而得到平面,根據(jù)面面垂直的判定定理得平面平面.(2)由題意得可得,兩兩垂直,故可建立空間直角坐標(biāo)系,結(jié)合題意可得點(diǎn),于是可求得平面的法向量為,又是平面的一個(gè)法向量,求得后結(jié)合圖形可得所求余弦值為

          詳解:(1)由,,,得,

          為直角三角形,且

          同理為直角三角形,且

          又四邊形是正方形,

          .

          在梯形中,過(guò)點(diǎn)作,

          故四邊形是正方形,

          .

          中,,

          ,

          ,

          .

          ,,

          平面,

          平面,

          ,

          平面,

          平面,

          ∴平面平面

          (2)由(1)可得,,兩兩垂直,以為原點(diǎn),,所在直線為軸建立如圖所示的空間直角坐標(biāo)系,

          .

          ,則

          ,

          ∴點(diǎn).

          平面,

          是平面的一個(gè)法向量.

          設(shè)平面的法向量為.

          ,即,可得.

          ,得

          由圖形知二面角為銳角,

          ∴二面角的平面角的余弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、、均在拋物線上.

          1)寫(xiě)出該拋物線的方程及其準(zhǔn)線方程;

          2)當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),求的值及直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

          A. 64 B. 32 C. 96 D. 48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

          A. 64 B. 32 C. 96 D. 48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求的單調(diào)區(qū)間;

          (Ⅱ)求在區(qū)間上的最小值.

          【答案】(Ⅰ);(Ⅱ).

          【解析】(Ⅰ).

          ,得.

          的情況如上:

          所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

          (Ⅱ)當(dāng),即時(shí),函數(shù)上單調(diào)遞增,

          所以在區(qū)間上的最小值為.

          當(dāng),即時(shí),

          由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

          所以在區(qū)間上的最小值為.

          當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

          所以在區(qū)間上的最小值為.

          綜上,當(dāng)時(shí),的最小值為;

          當(dāng)時(shí),的最小值為

          當(dāng)時(shí),的最小值為.

          型】解答
          結(jié)束】
          19

          【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

          1)求的方程;

          2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}{bn}滿足,a12,b11,且對(duì)任意正整數(shù)n恒滿足2an+14an+2bn+12bn+12an+4bn1.

          1)求證:{an+bn}為等比數(shù)列,{anbn}為等差列;

          2)求證n1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的兩焦點(diǎn)為, , 為橢圓上一點(diǎn),且到兩個(gè)焦點(diǎn)的距離之和為6.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若已知直線,當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?

          (3)若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義域?yàn)?/span>,對(duì)任意都有,且當(dāng)時(shí), .

          (1)試判斷的單調(diào)性,并證明;

          (2),

          ①求的值;

          ②求實(shí)數(shù)的取值范圍,使得方程有負(fù)實(shí)數(shù)根.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】按文獻(xiàn)記載,《百家姓》成文于北宋初年,表1記錄了《百家姓》開(kāi)頭的24大姓氏:

          1

          衛(wèi)

          2記錄了2018年中國(guó)人口最多的前10大姓氏:

          2

          1:李

          2:王

          3:張

          4:劉

          5:陳

          6:楊

          7:趙

          8:黃

          9:周

          10:吳

          從《百家姓》開(kāi)頭的24大姓氏中隨機(jī)選取1個(gè)姓氏,則這個(gè)姓氏是2018年中國(guó)人口最多的前10大姓氏的概率為_____________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案