【題目】如圖1,四邊形是等腰梯形,
,
,
,
為
的中點(diǎn).將
沿
折起,如圖2,點(diǎn)
是棱
上的點(diǎn).
(1)若為
的中點(diǎn),證明:平面
平面
;
(2)若,試確定
的位置,使二面角
的余弦值等于
.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)取的中點(diǎn)為
,連結(jié)
,
,易知
,可得
平面
,從而
,取
中點(diǎn)
,連結(jié)
,
,易證
,
,
,
四點(diǎn)共面,由
,可得
,即可證明
平面
,從而可證明平面
平面
;
(2)先證明互相垂直,進(jìn)而分別以
,
,
為
,
,
軸正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè)
,可得到
點(diǎn)坐標(biāo),進(jìn)而求得平面
和平面
的法向量
,由
可求出
的值.
(1)由題意,且
,所以四邊形
是平行四邊形,
又,
,所以
是正三角形,
是菱形,
取的中點(diǎn)為
,連結(jié)
,
,易知
是正三角形,則
,又
,則
平面
,所以
;
取中點(diǎn)
,連結(jié)
,
,則
,所以
,
,
,
四點(diǎn)共面,
又,則
,又
,所以
平面
.
又平面
,∴平面
平面
.
(2)因?yàn)?/span>,
,所以
,又
且
,則以
,
,
為
,
,
軸正方向,建立如圖所示的空間直角坐標(biāo)系,
則,
,
,
,設(shè)
,
則,易知平面
的法向量可取
,
設(shè)平面的法向量為
,又
,
,
∴,則可取
,
由題意,解得
,故
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正整數(shù)數(shù)列滿足:
,
(1)寫(xiě)出數(shù)列的前5項(xiàng);
(2)將數(shù)列中所有值為1的項(xiàng)的項(xiàng)數(shù)按從小到大的順序依次排列,得到數(shù)列
,試用
表示
(不必證明);
(3)求最小的正整數(shù),使
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列,記
,給出下列定義:
①若存在實(shí)數(shù),使
成立,則稱數(shù)列
為“有上界數(shù)列”;
②若數(shù)列為有上界數(shù)列,且存在
,使
成立,則稱數(shù)列
為“有最大值數(shù)列”;
③若,則稱數(shù)列
為“比減小數(shù)列”.
(1)根據(jù)上述定義,判斷數(shù)列是何種數(shù)列?
(2)若數(shù)列中,
,
,求證:數(shù)列
既是有上界數(shù)列又是比減小數(shù)列;
(3)若數(shù)列是單調(diào)遞增數(shù)列,且是有上界數(shù)列,但不是有最大值數(shù)列,求證:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
是
的導(dǎo)函數(shù),則下列結(jié)論中正確的是( )
A.函數(shù)的值域與
的值域不相同
B.把函數(shù)的圖象向右平移
個(gè)單位長(zhǎng)度,就可以得到函數(shù)
的圖象
C.函數(shù)和
在區(qū)間
上都是增函數(shù)
D.若是函數(shù)
的極值點(diǎn),則
是函數(shù)
的零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以
為直徑的圓
上,
垂直與圓
所在平面,
為
的垂心.
(1)求證:平面平面
;
(2)若,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,對(duì)于不相等的實(shí)數(shù)
、
,設(shè)
,
,現(xiàn)有如下命題:
①對(duì)于任意不相等的實(shí)數(shù)、
,都有
;
②對(duì)于任意的及任意不相等的實(shí)數(shù)
、
,都有
;
③對(duì)于任意的,存在不相等的實(shí)數(shù)
、
,使得
;
④對(duì)于任意的,存在不相等的實(shí)數(shù)
、
,使得
;
其中所有的真命題的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)
,其左焦點(diǎn)為
.過(guò)
點(diǎn)的直線
交橢圓于
、
兩點(diǎn),交
軸的正半軸于點(diǎn)
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且與
垂直的直線交橢圓于
、
兩點(diǎn),若四邊形
的面積為
,求直線
的方程;
(3)設(shè),
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是無(wú)窮等比數(shù)列,若
的每一項(xiàng)都等于它后面所有項(xiàng)的
倍,則實(shí)數(shù)
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)滿足方程
.
(1)求點(diǎn)M的軌跡C的方程;
(2)作曲線C關(guān)于軸對(duì)稱的曲線,記為
,在曲線C上任取一點(diǎn)
,過(guò)點(diǎn)P作曲線C的切線l,若切線l與曲線
交于A,B兩點(diǎn),過(guò)點(diǎn)A,B分別作曲線
的切線
,證明
的交點(diǎn)必在曲線C上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com