【題目】已知,
是兩條不同直線,
,
是兩個不同平面,給出下列四個命題:
①若,
垂直于同一平面,則
與
平行;
②若,
平行于同一平面,則
與
平行;
③若,
不平行,則在
內(nèi)不存在與
平行的直線;
④若,
不平行,則
與
不可能垂直于同一平面
其中真命題的個數(shù)為( 。
A.4B.3C.2D.1
【答案】D
【解析】
①若垂直于同一平面,則
與
可能相交;②若
,
平行于同一平面,則兩直線位置不能確定;③若
相交,則在
內(nèi)存在無數(shù)條與
平行的直線;④用反證法證明結(jié)論成立.即可得出結(jié)論.
①若直線垂直平面
,根據(jù)面面垂直的判斷定理,
所有過直線的平面都與平面
垂直,取其中的兩個平面為
,
此時相交,故①不正確;
②若,
平行于同一平面,則兩直線可能平行、相交、異面;
故②不正確;
③若不平行,則
相交,則在
內(nèi)存在無數(shù)條直線與兩平面的交線平行,
根據(jù)線面平面的判定定理,這無數(shù)條平行線與平面平行,故③不正確;
④假設(shè)同垂直平面
,則有
,與已知
不平行矛盾,
故假設(shè)不成立,即不同垂直平面
,故④正確.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)橢圓與雙曲線
有相同的焦點
、
,
是橢圓
與雙曲線
的公共點,且△
的周長為6,求橢圓
的方程;我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”;
(2)如圖,已知“盾圓”的方程為
,設(shè)“盾圓
”上的任意一點
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧(
)與第(1)小題橢圓弧
(
)所合成的封閉曲線為“盾圓
”,設(shè)過點
的直線與“盾圓
”交于
、
兩點,
,
,且
(
),試用
表示
,并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形
是梯形,
∥
,
,平面
平面
,且
.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的大;
(Ⅲ)已知點在棱
上,且異面直線
與
所成角的余弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得
對
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生自主學(xué)習(xí)期間完成數(shù)學(xué)套卷的情況,一名教師對某班級的所有學(xué)生進行了調(diào)查,調(diào)查結(jié)果如下表.
(1)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生完成套卷數(shù)之和為4的概率?
(2)若從完成套卷數(shù)不少于4套的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為,求隨機變量
的分布列和數(shù)學(xué)期望;
(3)試判斷男學(xué)生完成套卷數(shù)的方差與女學(xué)生完成套卷數(shù)的方差
的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù)
與函數(shù)
有交點,且交點橫坐標(biāo)之和不大于
,求
的取值范圍_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點
到點
的距離比它到
軸的距離多1,記點
的軌跡為
;
(1)求軌跡的方程;
(2)求定點到軌跡
上任意一點
的距離
的最小值;
(3)設(shè)斜率為的直線
過定點
,求直線
與軌跡
恰好有一個公共點,兩個公共點,三個公共點時
的相應(yīng)取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com