【題目】已知函數,
(Ⅰ)當a=1時,若曲線y=f(x)在點M (x0,f(x0))處的切線與曲線y=g(x)在點P (x0, g(x0))處的切線平行,求實數x0的值;
(II)若(0,e],都有f(x)≥g(x)+
,求實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】某學校高三年級有400名學生參加某項體育測試,根據男女學生人數比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數,將數據分成7組:,整理得到如下頻率分布直方圖:
(1)若該樣本中男生有55人,試估計該學校高三年級女生總人數;
(2)若規(guī)定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;
(3)若規(guī)定分數在為“良好”,
為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數為“良好”或“優(yōu)秀”的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,圓心為坐標原點的單位圓O在C的內部,且與C有且僅有兩個公共點,直線
與C只有一個公共點.
(1)求C的標準方程;
(2)設不垂直于坐標軸的動直線l過橢圓C的左焦點F,直線l與C交于A,B兩點,且弦AB的中垂線交x軸于點P,試求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e為自然對數的底數)
(Ⅰ)當a=1時,求f(x)的單調區(qū)間;
(Ⅱ)若函數f(x)在 上無零點,求a的最小值;
(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長為2的菱形,側面
底面
,
,
,
為
的中點,點
在側棱
上.
(1)求證:;.
(2)若是
的中點,求二面角
的余弦值;
(3)若,當
平面
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
是兩條不同直線,
,
是兩個不同平面,給出下列四個命題:
①若,
垂直于同一平面,則
與
平行;
②若,
平行于同一平面,則
與
平行;
③若,
不平行,則在
內不存在與
平行的直線;
④若,
不平行,則
與
不可能垂直于同一平面
其中真命題的個數為( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,過
的左焦點做
軸的垂線交橢圓于
、
兩點,且
.
(1)求橢圓的標準方程及長軸長;
(2)橢圓的短軸的上下端點分別為
,
,點
,滿足
,且
,若直線
,
分別與橢圓
交于
,
兩點,且
面積是
面積的5倍,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 平面
平面
,
.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在點
,使得
平面
?若存在, 求
的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記實數、
、
、
中的最大數為
,最小數為
.設
的三邊邊長分別為
、
、
,且
,定義
的傾斜度為
.
(1)若為等腰三角形,則
_____;
(2)設,則
的取值范圍是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com