日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知多面體中,四邊形為平行四邊形, ,且 , .

          (1)求證:平面平面;

          (2)若,直線與平面夾角的正弦值為,求的值.

          【答案】(1)證明見(jiàn)解析 (2)

          【解析】試題分析:

          (1)由題意結(jié)合線面垂直的判斷定理可得平面,然后利用面面垂直的判斷定理即可證得平面平面.

          (2)建立空間直角坐標(biāo)系,結(jié)合題意利用夾角公式可得求得直線與平面的夾角的正弦值,據(jù)此可得.

          試題解析:

          (1)∵, ,∴,

          ;

          , ,∴平面;

          因?yàn)?/span>平面,所以平面平面.

          (2)因?yàn)槠矫?/span>平面,平面平面, ,

          所以平面 平面,故

          為原點(diǎn), 所在直線分別為軸,過(guò)點(diǎn)且垂直于平面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,

          設(shè),則, , ,

          設(shè)平面的一個(gè)法向量

          因?yàn)?/span>,

          ,取, ,則,

          設(shè)直線與平面的夾角為,

          ,解得舍去),故.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

          租用單車數(shù)量(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本(元)

          3.2

          2.4

          2

          1.9

          1.7

          根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

          (1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

          ①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

          租用單車數(shù)量 (千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本 (元)

          3.2

          2.4

          2

          1.9

          1.7

          模型甲

          估計(jì)值

          2.4

          2.1

          1.6

          殘差

          0

          -0.1

          0.1

          模型乙

          估計(jì)值

          2.3

          2

          1.9

          殘差

          0.1

          0

          0

          ②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

          (2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:

          收入x (萬(wàn)元)

          8.2

          8.6

          10.0

          11.3

          11.9

          支出y (萬(wàn)元)

          6.2

          7.5

          8.0

          8.5

          9.8

          根據(jù)如表可得回歸直線方程y= x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶收入為20萬(wàn)元家庭年支出為(
          A.11.4萬(wàn)元
          B.11.8萬(wàn)元
          C.15.2萬(wàn)元
          D.15.6萬(wàn)元

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l過(guò)點(diǎn)P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
          (1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
          (2)若直線l和圓C相交于A、B兩點(diǎn),求|PA||PB|及弦長(zhǎng)|AB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
          (1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
          (2)若f(x)>0在(0,+∞)對(duì)任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

          (1)求證:BC⊥平面PAC;
          (2)若M是PC的中點(diǎn),求二面角M﹣AD﹣C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

          (1)求曲線、的極坐標(biāo)方程;

          (2)求曲線交點(diǎn)的極坐標(biāo),其中, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐的底面是矩形, ⊥平面, .

          (1)求證: ⊥平面;

          (2)求二面角余弦值的大小;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
          (1)若函數(shù)f(x)在[﹣1,2m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
          (2)若f(1)=g(1).
          (。┣髮(shí)數(shù)a的值;
          (ⅱ)設(shè) ,t2=g(x), ,當(dāng)x∈(0,1)時(shí),試比較t1 , t2 , t3的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案