日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】過拋物線E:x2=2py(p>0) 的焦點F作斜率分別為 k1,k2 的兩條不同的直線 l1,l2 ,且k1+k2=2 ,l1與E 相交于點A,B, l2與E 相交于點C,D.以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為 l .
          (1)若k1>0,k2>0 ,證明;;
          (2)若點M到直線 l 的距離的最小值為 ,求拋物線E的方程.

          【答案】
          (1)

          【解答】由題意,拋物線E的焦點為 ,直線 l1 的方程為 .

          ,得 x2-2pk1x-p2=0 ,設(shè)A,B兩點坐標(biāo)分別為(x1,y1),(x2,y2),

          則 x1,x2 是上述方程的兩個實數(shù)根,從而x1+x2 =2pk1, ,y1+y2=k1(x1+x2)+p=2pk12+p ,所以點M的坐標(biāo)為 , ,同理可得點N的坐標(biāo)為 , ,于是

          ,由題設(shè), k1+k2=2 ,k1>0,k2>0, ,

          所以 ,故


          (2)

          【解答】由拋物線的定義得 , ,

          所以|AB|=y1+y2+p=2pk12+2p ,從而圓M的半徑r1=pk12+p ,故圓M的方程為

          化簡得

          同理可得圓N的方程為 .于是圓M,圓N的公共弦所在直線l的方程為 ,又 , ,則 的方程為 ,因為 p>0 ,所以點M到直線l的距離 ,故當(dāng) 時, d 取最小值 ,由題設(shè), ,解得 p=8 ,故所求拋物線E的方程為x2=16y .


          【解析】(1)先寫出過拋物線焦點的直線方程,然后和拋物線方程聯(lián)立消去y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系以及向量的坐標(biāo)運算可得到結(jié)果.(2)利用拋物線的焦點弦長公式求出|AB|,此即圓M的直徑,進而可求出圓M的方程,同理可求出圓N的方程,再把兩圓的方程相減即得兩圓公共弦所在直線 方程,于是代入條件即可求解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù) ,
          (1)若不等式 的解集 .求 的值;
          (2)若 的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)當(dāng) 時,討論 f(x)的單調(diào)性;
          (2)若 時, ,求 a 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 ,函數(shù) f(x)=x2(x-a) ,若f'(1)=1 .
          (1)求 a 的值并求曲線 y=f(x) 在點(1,f(1)) 處的切線方程y=g(x) ;
          (2)設(shè)h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,兩個橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點,給出下列四個判斷:

          ①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點的距離之和為定值;

          ②曲線C關(guān)于直線y=x、y=-x均對稱;③曲線C所圍區(qū)域面積必小于36.

          ④曲線C總長度不大于6π.上述判斷中正確命題的序號為________________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= 為偶函數(shù),方程f(x)=m有四個不同的實數(shù)解,則實數(shù)m的取值范圍是(
          A.(﹣3,﹣1)
          B.(﹣2,﹣1)
          C.(﹣1,0)
          D.(1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;
          (1);
          (2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

          經(jīng)常使用

          偶爾或不用

          合計

          30歲及以下

          70

          30

          100

          30歲以上

          60

          40

          100

          合計

          130

          70

          200

          (1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

          (2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

          (i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

          (ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          同步練習(xí)冊答案