日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓,直線與圓交于兩點,點在直線上且滿足.若,則弦中點的橫坐標(biāo)的取值范圍為_____________.

          【答案】

          【解析】

          ①當(dāng)直線斜率不存在時,易求得;②當(dāng)直線斜率存在時,設(shè)其方程為,利用直線與圓有交點可求得;將直線方程與圓方程聯(lián)立得到韋達(dá)定理的形式;根據(jù)可整理得到,,,滿足的方程,代入韋達(dá)定理的結(jié)論整理可得;當(dāng)時,知;當(dāng)時,可將表示為關(guān)于的函數(shù),利用對號函數(shù)的性質(zhì)可求得值域,即為所求的范圍;綜合兩類情況可得最終結(jié)果.

          設(shè)

          ①當(dāng)直線斜率不存在時,直線方程為,此時,,

          ,,,

          滿足,此時;

          ②當(dāng)直線斜率存在時,設(shè)其方程為:

          與圓有兩個不同交點,,即,

          得:,

          設(shè),

          ,

          ,

          .

          ,,解得:,

          得:

          整理得:,

          ,整理得:,

          當(dāng)時,;

          當(dāng)時,,代入式得:,

          解得:

          ,

          ,

          當(dāng)時,單調(diào)遞增,

          上單調(diào)遞減,

          ,

          綜上所述:弦中點的橫坐標(biāo)的取值范圍為.

          故答案為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準(zhǔn)備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,4554,61,但調(diào)整只能在相鄰派送點進行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則(

          A.最少需要16次調(diào)動,有2種可行方案

          B.最少需要15次調(diào)動,有1種可行方案

          C.最少需要16次調(diào)動,有1種可行方案

          D.最少需要15次調(diào)動,有2種可行方案

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.

          (Ⅰ)求證:PO平面;

          (Ⅱ)求平面EFG與平面所成銳二面角的大;

          (Ⅲ)線段上是否存在點,使得直線與平面所成角為,若存在,求線段的長度;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中

          1)若時,函數(shù)有兩個極值點,求的取值范圍,并證明

          2)若時,不等式對于任意總成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在三棱錐中,底面,,,,的中點.

          (1)求證:;

          (2)若二面角的大小為,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,的中點.

          (1)證明:平面平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】大學(xué)就業(yè)部從該大學(xué)2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機抽取了100人進行月薪情況的問卷調(diào)查,經(jīng)統(tǒng)計發(fā)現(xiàn),他們的月薪收入在3000元到10000元之間,具體統(tǒng)計數(shù)據(jù)如表:

          月薪(百萬)

          人數(shù)

          2

          15

          20

          15

          24

          10

          4

          1)經(jīng)統(tǒng)計發(fā)現(xiàn),該大學(xué)2018屆的大學(xué)本科畢業(yè)生月薪(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值).若落在區(qū)間的左側(cè),則可認(rèn)為該大學(xué)本科生屬“就業(yè)不理想”的學(xué)生,學(xué)校將聯(lián)系本人,咨詢月薪過低的原因,為以后的畢業(yè)生就業(yè)提供更好的指導(dǎo)意見.現(xiàn)該校2018屆大學(xué)本科畢業(yè)生張茗的月薪為3600元,試判斷張茗是否屬于“就業(yè)不理想”的學(xué)生;

          2)①將樣本的頻率視為總體的概率,若大學(xué)領(lǐng)導(dǎo)決定從大學(xué)2018屆所有本畢業(yè)生中任意選取5人前去探訪,記這5人中月薪不低于8000元的人數(shù)為,求的數(shù)學(xué)期望與方差;

          ②在(1)的條件下,中國移動贊助了大學(xué)的這次社會調(diào)查活動,并為這次參與調(diào)查的大學(xué)本科畢業(yè)生制定了贈送話費的活動,贈送方式為:月薪低于的獲贈兩次隨機話費,月薪不低于的獲贈一次隨機話費;每次贈送的話費及對應(yīng)的概率分別為:

          贈送話費(單位:元)

          50

          100

          150

          概率

          則張茗預(yù)期獲得的話費為多少元?(結(jié)果保留整數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,四邊形是邊長為2的菱形,.

          1)證明:平面平面;

          2)當(dāng)直線與平面所成的角為30°時,求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)在區(qū)間上有且僅有2個零點,對于下列4個結(jié)論:①在區(qū)間上存在,滿足;②在區(qū)間有且僅有1個最大值點;③在區(qū)間上單調(diào)遞增;④的取值范圍是,其中所有正確結(jié)論的編號是( )

          A.①③B.①③④C.②③D.①④

          查看答案和解析>>

          同步練習(xí)冊答案