【題目】已知函數,
,其中
為實數.
(1)是否存在,使得
?若存在,求出實數
的取值范圍;若不存在,請說明理由;
(2)若集合中恰有5個元素,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知曲線的方程為:
,其中:
,且
為常數.
(1)判斷曲線的形狀,并說明理由;
(2)設曲線分別與
軸,
軸交于點
(
不同于坐標原點
),試判斷
的面積
是否為定值?并證明你的判斷;
(3)設直線與曲線
交于不同的兩點
,且
為坐標原點),求曲線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(左)視圖均為直角三角形,俯視圖外框為矩形,相關數據如圖2所示.
(1)設中點為
,在直線
上找一點
,使得
平面
,并說明理由;
(2)若二面角的平面角的余弦值為
,求四棱錐
的外接球的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
(
為參數).
(1)直線過
且與曲線
相切,求直線
的極坐標方程;
(2)點與點
關于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程為
,以極點為原點, 極軸為
軸的正半軸, 建立平面直角坐標系, 直線
的參數方程為
為參數).
(1)判斷直線與曲線
的位置關系, 并說明理由;
(2)若直線與曲線
相交于
兩點, 且
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某地高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數測試,將所得數據整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數在110以上為達標,試估計全體高一學生的達標率為多少?
(3)通過該統計圖,可以估計該地學生跳繩次數的眾數是______,中位數是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃在今年內同時出售變頻空調機和智能洗衣機,由于這兩種產品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據實際情況(如資金、勞動力)確定產品的月供應量,以使得總利潤達到最大.已知對這兩種產品有直接限制的因素是資金和勞動力,經調查,得到關于這兩種產品的有關數據如下表:
資金 | 每臺產品所需資金(百元) | 月資金供應量 (百元) | |
空調機 | 洗衣機 | ||
成本 | 30 | 20 | 300 |
勞動力(工資) | 5 | 10 | 110 |
每臺產品利潤 | 6 | 8 |
試問:怎樣確定兩種貨物的月供應量,才能使總利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com