日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在三棱錐P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M為AB的中點(diǎn),四點(diǎn)P、A、M、C都在球O的球面上.

          (1)證明:平面PAB⊥平面PCM;

          (2)證明:線段PC的中點(diǎn)為球O的球心

           

          【答案】

            (1)證明:∵AC=BC,M為AB的中點(diǎn),∴CM⊥AM.∵PA⊥平面ABC,CM⊂平面ABC,∴PA⊥CM.

          ∵AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,

          ∴CM⊥平面PAB.

          ∵CM⊂平面PCM,

          ∴平面PAB⊥平面PCM.

          (2)證明:由(1)知CM⊥平面PAB.

          ∵PM⊂平面PAB,

          ∴CM⊥PM.

          ∵PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC.如圖,,取PC的中點(diǎn)N,連結(jié)MN、AN.在Rt△PAC中,點(diǎn)N為斜邊PC的中點(diǎn),

          ∴AN=PN=NC.在Rt△PCM中,點(diǎn)N為斜邊PC的中點(diǎn),

          ∴MN=PN=NC.

          ∴PN=NC=AN=MN.

          ∴點(diǎn)N是球O的球心,即線段PC的中點(diǎn)為球O的球心.

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廣州一模)如圖所示,在三棱錐P-ABC中,AB=BC=
          6
          ,平面PAC⊥平面ABC,PD⊥AC于點(diǎn)D,AD=1,CD=3,PD=
          3

          (1)證明△PBC為直角三角形;
          (2)求直線AP與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在三棱錐P-ABC中,PA⊥面ABC,∠ABC=90°.該三棱錐中有哪些直角三角形,哪些面面垂直(只寫結(jié)果,不要求證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在三棱錐P-ABC中,PA⊥面ABC,∠ABC=90°.
          (1)判斷△PBC的形狀;
          (2)證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在三棱錐P-ABC中,AB=BC=
          6
          ,平面PAC⊥平面ABC,PD⊥AC于點(diǎn)D,點(diǎn)O為AC的中點(diǎn),AD=1,CD=3,PD=
          3

          (1)求證:BO⊥平面PAC
          (2)證明:△PBC為直角三角形;
          (3)求直線AP與平面PBC所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在三棱錐P-ABC中,PA⊥平面ABC,PA=1,AB⊥AC,AB=AC=2,E為AC的中點(diǎn).
          (1)求異面直線BE與PC所成角的余弦值;
          (2)求二面角P-BE-C的平面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案