日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. △ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知cos(A-C)+cosB=1,a=2c,則C=( 。
          A.
          π
          6
          6
          B.
          π
          6
          C.
          π
          3
          3
          D.
          π
          3
          由B=π-(A+C)可得cosB=-cos(A+C)
          ∴cos(A-C)+cosB=cos(A-C)-cos(A+C)=2sinAsinC=1
          ∴sinAsinC=
          1
          2
          …①
          由a=2c及正弦定理可得sinA=2sinC…②
          ①②聯(lián)解可得,sin2C=
          1
          4

          ∵0<C<π,∴sinC=
          1
          2

          結(jié)合a=2c即a>c,得C為銳角,∴C=
          π
          6

          故選:B
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=
          14

          (Ⅰ)求△ABC的周長;
          (Ⅱ)求cos(A-C)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•唐山二模)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,△ABC的面積S=
          3
          4
          (c2-a2-b2)

          (Ⅰ)求C;
          (Ⅱ)若a+b=2,且c=
          3
          ,求A.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•寶坻區(qū)一模)設(shè)函數(shù)f(x)=sinx+cos(x+
          π
          6
          ),x∈R
          (Ⅰ)求函數(shù)f(x)的最小正周期和值域;
          (Ⅱ)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=
          3
          2
          ,且a=
          3
          2
          b
          ,求角C的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          △ABC的內(nèi)角A、B、C的對邊分別為a、b、c,三邊長a、b、c成等比數(shù)列,且a2=c2+ac-bc,則
          asinB
          b
          的值為
          3
          2
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•上海)已知△ABC的內(nèi)角A、B、C所對的邊分別是a、b、c,若3a2+2ab+3b2-3c2=0,則角C的大小是
          π-arccos
          1
          3
          π-arccos
          1
          3

          查看答案和解析>>

          同步練習(xí)冊答案