【題目】已知在平面直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C與橢圓
的離心率相同,且橢圓C短軸的頂點(diǎn)與橢圓E長軸的頂點(diǎn)重合.
(1)求橢圓C的方程;
(2)若直線l與橢圓E有且僅有一個公共點(diǎn),且與橢圓C交于不同兩點(diǎn)A,B,求的最大值.
【答案】(1);(2)
【解析】
(1)先求出橢圓的長軸及離心率,進(jìn)而可得到橢圓C的短軸和離心率,進(jìn)而可求得橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線的斜率不存在,易知直線
與橢圓
相切,不符合題,從而可知直線
的斜率存在,設(shè)出直線
的方程
,與橢圓
聯(lián)立,得到關(guān)于
的一元二次方程,結(jié)合
,可得
,然后將直線
的方程與橢圓
的方程聯(lián)立,得到關(guān)于
的一元二次方程,進(jìn)而求得弦長
的表達(dá)式,結(jié)合
,可求得弦長的最大值.
(1)由題意,橢圓的長軸長為4,離心率為
,
設(shè)橢圓的方程為
,則橢圓
的短軸長為
,即
,離心率為
,解得
,故橢圓
的方程為
.
(2)若直線的斜率不存在,則直線
方程為
,此時直線
與橢圓
相切,不滿足題意,故直線
的斜率存在,設(shè)其方程為
,
聯(lián)立,消去
得,
,
則,整理得
,
聯(lián)立,消去
得,
,
則,整理得
,顯然成立,
且,
,
則,
整理得,
又因?yàn)?/span>,所以
,
設(shè),則
,
,
因?yàn)?/span>,當(dāng)且僅當(dāng)
時,等號成立,所以
,此時
,即
時,
取得最大值
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面
是菱形,
,
平面
,
,點(diǎn)
,
分別為
和
中點(diǎn).
(1)求證:直線平面
;
(2)求與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,制作一個蛋糕成本3元,且以8元的價格出售,若當(dāng)天賣不完,剩下的則無償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計(jì),得到如下需求量表。該蛋糕店一天制作了這款蛋糕個,以
(單位:個,
,
)表示當(dāng)天的市場需求量,
(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤.
需求量/個 | |||||
天數(shù) | 15 | 25 | 30 | 20 | 10 |
(1)當(dāng)時,若
時獲得的利潤為
,
時獲得的利潤為
,試比較
和
的大;
(2)當(dāng)時,根據(jù)上表,從利潤
不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.
(i)求此時利潤關(guān)于市場需求量
的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);
(ii)再從這6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤為650元的天數(shù)為,求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1 000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1 200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機(jī)變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機(jī)變量.
(I)求Z的分布列和均值;
(II)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10 000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線C交于不同的兩點(diǎn)A,B,
的最小值為4.
(1)求拋物線C的方程;
(2)已知P,Q是拋物線C上不同的兩點(diǎn),若直線恰好垂直平分線段PQ,求實(shí)數(shù)k 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的左焦點(diǎn)為
,
是
上一點(diǎn),且
與
軸垂直,
,
分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且
,且
的面積是
,其中
是坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)若過點(diǎn)的直線
,
互相垂直,且分別與橢圓
交于點(diǎn)
,
,
,
四點(diǎn),求四邊形
的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校中小學(xué)生人數(shù)和近視情況分別如圖所示.為了解該校中小學(xué)生的近視形成原因,用分層抽樣的方式從中抽取一個容量為50的樣本進(jìn)行調(diào)查.
(1)求樣本中高中生、初中生及小學(xué)生的人數(shù);
(2)從該校初中生和高中生中各隨機(jī)抽取1名學(xué)生,用頻率估計(jì)概率,求恰有1名學(xué)生近視的概率;
(3)假設(shè)高中生樣本中恰有5名近視學(xué)生,從高中生樣本中隨機(jī)抽取2名學(xué)生,用表示2名學(xué)生中近視的人數(shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
和定點(diǎn)
,
是圓
上任意一點(diǎn),線段
的垂直平分線交
于點(diǎn)
,設(shè)動點(diǎn)
的軌跡為
.
(1)求的方程;
(2)過點(diǎn)作直線
與曲線
相交于
,
兩點(diǎn)(
,
不在
軸上),試問:在
軸上是否存在定點(diǎn)
,總有
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com