日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線(xiàn)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)與拋物線(xiàn)C交于不同的兩點(diǎn)AB,的最小值為4.

          1)求拋物線(xiàn)C的方程;

          2)已知PQ是拋物線(xiàn)C上不同的兩點(diǎn),若直線(xiàn)恰好垂直平分線(xiàn)段PQ,求實(shí)數(shù)k 的取值范圍.

          【答案】12

          【解析】

          1)設(shè),,過(guò)焦點(diǎn)的直線(xiàn)方程,代入拋物線(xiàn)方程,用焦半徑公式表示出焦點(diǎn)弦長(zhǎng)表示為的函數(shù)后可得最小值,由最小值為4可得;

          2)由垂直可設(shè)直線(xiàn)方程為,代入拋物線(xiàn)方程有,由韋達(dá)定理求出弦的中點(diǎn)坐標(biāo),代入直線(xiàn)方程,得的關(guān)系,再代入可求得的范圍.

          解:(1)設(shè)過(guò)焦點(diǎn)的直線(xiàn)與拋物線(xiàn)分別交于點(diǎn),,

          與拋物線(xiàn)方程聯(lián)立得,則,

          ,等號(hào)成立時(shí),

          ,故拋物線(xiàn);

          2)由題知,故可設(shè)直線(xiàn)方程為,

          與拋物線(xiàn)的方程聯(lián)立得,

          ①,

          ,

          設(shè)中點(diǎn)為,則,

          ,

          又點(diǎn)在直線(xiàn)上,故

          ,

          代入①式得,即,

          解得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊上, 的中點(diǎn),

          (Ⅰ)當(dāng)時(shí),求的大小;

          (Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】半正多面體(semiregular solid) 亦稱(chēng)阿基米德多面體,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線(xiàn)部分是某二十四等邊體的三視圖,則該幾何體的體積為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為(

          ①利用殘差進(jìn)行回歸分析時(shí),若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說(shuō)明線(xiàn)性回歸模型的擬合精度較高;

          ②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,期望與方差均沒(méi)有變化;

          ③調(diào)查劇院中觀眾觀后感時(shí),從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法;

          ④已知隨機(jī)變量服從正態(tài)分布,且,則.

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在平面直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C與橢圓的離心率相同,且橢圓C短軸的頂點(diǎn)與橢圓E長(zhǎng)軸的頂點(diǎn)重合.

          1)求橢圓C的方程;

          2)若直線(xiàn)l與橢圓E有且僅有一個(gè)公共點(diǎn),且與橢圓C交于不同兩點(diǎn)AB,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,書(shū)中有一問(wèn)題:今有方物一束,外周一匝有三十二枚,問(wèn)積幾何?,該著作中提出了一種解決此問(wèn)題的方法:重置二位,左位減八,余加右位,至盡虛減一,即得.”通過(guò)對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)8的整數(shù)倍時(shí),均可采用此方法求解,如圖是解決這類(lèi)問(wèn)題的程序框圖,若輸入,則輸出的結(jié)果為(

          A.80B.47C.79D.48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),的最大值為.

          (Ⅰ)求實(shí)數(shù)的值;

          (Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

          (Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,ABCD,ABBC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2

          1)求證:BCA;

          2)求二面角D-A-B的余弦值;

          3)在線(xiàn)段D上是否存在點(diǎn)M,使得CM∥平面DA?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說(shuō):“我羊所吃的禾苗只有馬的一半,”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問(wèn)題中,1斗為10升,則馬主人應(yīng)償還( )升粟?

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案