日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長都等于1,點(diǎn)E,F,G分別是AB,AD,CD的中點(diǎn),計(jì)算:

          (1)·.
          (2)EG的長.
          (3)異面直線EG與AC所成角的大小.

          (1)   (2)    (3) 45°

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (理)已知直三棱柱中,,是棱的中點(diǎn).如圖所示.
           
          (1)求證:平面;
          (2)求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐的底面ABCD是平行四邊形,,,,設(shè)中點(diǎn),點(diǎn)在線段上且

          (1)求證:平面
          (2)設(shè)二面角的大小為,若,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知正方形ABCD的邊長為2,AC∩BD=O.將正方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.

          (1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
          (2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖幾何體中,四邊形為矩形,,,的中點(diǎn),為線段上的一點(diǎn),且.

          (1)證明:;
          (2)證明:面;
          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖(1),四邊形ABCD中,E是BC的中點(diǎn),DB=2,DC=1,BC=,AB=AD=.將圖(1)沿直線BD折起,使得二面角A­BD­C為60°,如圖(2).

          (1)求證:AE⊥平面BDC;
          (2)求直線AC與平面ABD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,底面是邊長為1的菱形,,底面,的中點(diǎn),的中點(diǎn),,如圖建立空間直角坐標(biāo)系.

          (1)求出平面的一個(gè)法向量并證明平面;
          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABAD,ABCDAB=2AD=2CD=2,EPB的中點(diǎn).
           
          (1)求證:平面EAC⊥平面PBC;
          (2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,平面平面是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).

          (1)求異面直線所成角的大;
          (2)求直線和平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案