日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若函數(shù)f(x)=logax(0<a<1)在[a,2a]上的最大值是其最小值的2倍,則a=

          【答案】
          【解析】解:∵0<a<1∴函數(shù)f(x)=logax在[a,2a]上為減函數(shù)
          故當x=a時,函數(shù)f(x)取最大值1,
          當x=2a時,函數(shù)f(x)取最小值1+loga2,
          又∵函數(shù)f(x)=logax(0<a<1)在[a,2a]上的最大值是其最小值的2倍,
          故loga2=﹣
          即a=
          所以答案是:
          【考點精析】利用函數(shù)的值域?qū)︻}目進行判斷即可得到答案,需要熟知求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線,過點的直線交拋物線于兩點,坐標原點為,且12.

          (Ⅰ)求拋物線的方程;

          (Ⅱ)當以為直徑的圓的面積為時,求的面積的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平行六面體ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
          (1)求異面直線A1B與AC1所成角的余弦值;
          (2)求二面角B﹣A1D﹣A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)討論函數(shù)的單調(diào)性;

          (Ⅱ)記函數(shù)的兩個零點分別為,且.已知,若不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(
          A.y=x+1
          B.y=﹣x3
          C.y=x|x|
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣|x2﹣ax﹣2|,a為實數(shù).
          (1)當a=1時,求函數(shù)f(x)在[0,3]上的最小值和最大值;
          (2)若函數(shù)f(x)在(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
          (1)求f(0)的值;
          (2)求f(x)的解析式;
          (3)若g(x)=kx﹣2k+5,對任意的m∈[1,4],總存在n∈[1,4],使得f(m)=g(n)成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知雙曲線C: (a>0,b>0)過點A(1,0),且離心率為
          (1)求雙曲線C的方程;
          (2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】異面直線a,b成60°,直線c⊥a,則直線b與c所成的角的范圍為

          查看答案和解析>>

          同步練習冊答案