日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:

          (1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;

          (2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

          【答案】(1);(2)

          【解析】

          (1)令f(x)=x2-a,可將問題轉(zhuǎn)化為“當(dāng)時(shí),”,故求出即可.(2)根據(jù)“p∨q”為真命題,命題“p∧q”為假命題可得p與q一真一假,然后分類討論可得所求的結(jié)果.

          (1)令,

          根據(jù)題意,“命題p為真命題”等價(jià)于“當(dāng)時(shí),”.

          ,

          ,

          解得.

          ∴實(shí)數(shù)的取值范圍為

          (2)由(1)可知,當(dāng)命題p為真命題時(shí),實(shí)數(shù)滿足

          當(dāng)命題q為真命題,即方程有實(shí)數(shù)根時(shí),則有Δ=4a2-4(2-a)≥0,

          解得

          ∵命題“p∨q”為真命題,命題“p∧q”為假命題,

          ∴命題p與q一真一假

          ①當(dāng)命題p為真,命題q為假時(shí),

          ,解得;

          ②當(dāng)命題p為假,命題q為真時(shí),

          ,解得

          綜上可得

          ∴實(shí)數(shù)的取值范圍為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知有一個三邊長分別為3,4,5的三角形.求下面兩只螞蟻與三角形三頂點(diǎn)的距離均超過1的概率.(1)一只螞蟻在三角形的邊上爬行(2)一只螞蟻在三角形所在區(qū)域內(nèi)部爬行

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱臺ABO﹣A1B1O1中,側(cè)面AOO1A1與側(cè)面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

          (1)證明:AB1⊥BO1;
          (2)求直線AO1與平面AOB1所成的角的正切值;
          (3)求二面角O﹣AB1﹣O1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱臺ABO﹣A1B1O1中,側(cè)面AOO1A1與側(cè)面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

          (1)證明:AB1⊥BO1;
          (2)求直線AO1與平面AOB1所成的角的正切值;
          (3)求二面角O﹣AB1﹣O1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
          (1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
          (2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
          (3)若a= ,證明:ex1f(x)≥x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓: 的左右焦點(diǎn)分別 ,過作垂直于軸的直線交橢圓于兩點(diǎn),滿足.

          (1)求橢圓的離心率.

          (2)是橢圓短軸的兩個端點(diǎn),設(shè)點(diǎn)是橢圓上一點(diǎn)(異于橢圓的頂點(diǎn)),直線分別與軸相交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
          (Ⅰ)求f(x)的最小正周期;
          (Ⅱ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=e|lnx|(e為自然對數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結(jié)論一定不成立的是(
          A.x2f(x1)>1
          B.x2f(x1)=1
          C.x2f(x1)<1
          D.x2f(x1)<x1f(x2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
          (Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為Tn , 求滿足Tn (n∈N*)的n的最大值.

          查看答案和解析>>