日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)定義域?yàn)镮,存在非零常數(shù)T,對(duì)于任意的x∈I,都有f(x+T)=-f(x),則f(x)是周期函數(shù)嗎?若都有f(x+T)=
          1
          f(x)
          ,則f(x)是周期函數(shù)嗎?若都有f(x+T)=-
          1
          f(x)
          ,則f(x)是周期函數(shù)嗎?請(qǐng)給出詳細(xì)的證明.
          考點(diǎn):函數(shù)的周期性
          專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
          分析:根據(jù)周期函數(shù)的定義,若f(x+T)=f(x)則f(x)為周期函數(shù),其中T為非零常數(shù).
          解答: (1)∵f(x+T)=-f(x),
          ∴f(x+2T)=-f(x+T)=-[-f(x)]=f(x)
          即存在非零常數(shù)2T,對(duì)于任意的x∈I;都有
          f(x+2T)=f(x),
          ∴f(x)是以2T為周期的周期函數(shù).
          (2)∵f(x+T)=
          1
          f(x)
          ,
          ∴f(x+2T)=f(x+T+T)=
          1
          f(x+T)
          =
          1
          1
          f(x)
          =f(x),
          即存在非零常數(shù)2T,對(duì)于任意的x∈I,都有f(x+2T)=f(x),
          ∴f(x)是以2T為周期的周期函數(shù).
          (3)∵f(x+T)=-
          1
          f(x)
          ,
          ∴f(x+2T)=-
          1
          f(x+T)
          =-
          1
          -
          1
          f(x)
          =f(x),
          即存在非零常數(shù)2T,對(duì)于任意的x∈I;都有
          f(x+2T)=f(x),
          ∴f(x)是以2T為周期的周期函數(shù).
          點(diǎn)評(píng):本題主要考查了周期函數(shù)的定義以及轉(zhuǎn)化思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知等差數(shù)列{an}中,其前n項(xiàng)的和為Sn,a3+a5=8,且S9=45,則a2014=( 。
          A、1006B、1007
          C、2013D、2014

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)等差數(shù)列{an}滿(mǎn)足a2=9,且a1,a5是方程x2-16x+60=0的兩根.
          (1)求{an}的通項(xiàng)公式;
          (2)求數(shù)列{|an|}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知α∈(0,
          π
          4
          ),β∈(0,π),且tan(α-β)=
          1
          2
          ,tanβ=-
          1
          7
          ,求tan(2α-β)的值及角2α-β.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)=ax3+bx2+c的圖象經(jīng)過(guò)點(diǎn)(0,1),且在x=1處的切線方程是y=-2x+1
          (1)求y=f(x)的解析式;
          (2)求y=f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f﹙x﹚滿(mǎn)足f﹙x+1﹚=-f﹙x﹚且f(1﹚=2.證明f﹙x﹚是周期函數(shù)并求出它的一個(gè)周期.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)數(shù)列{an}滿(mǎn)足
          an+1
          an
          =q,且q≠0,數(shù)列{bn}滿(mǎn)足bn=na1+(n-1)a2+(n-2)a3+…+2an-1+an(n∈N*),已知b1=m,b2=
          3m
          2
          ,其中m≠0:
          (Ⅰ)當(dāng)m=1時(shí),求bn
          (Ⅱ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)于任意的正整數(shù)n,都有Sn2-4sn+3≤0恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,已知AD為圓O的直徑,直線BA與圓O相切于點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12,則BM=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在(4x-2-x6的展開(kāi)式中,常數(shù)項(xiàng)為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案