【題目】已知函數(shù).
(1)若函數(shù)存在與直線
平行的切線,求實(shí)數(shù)
的取值范圍;
(2)設(shè),若
有極大值點(diǎn)
,求證:
.
【答案】(1); (2)詳見解析.
【解析】試題分析:
(1)本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù),由題意方程
在
上有實(shí)根,利用二次方程根的分布知識(shí)可求得
的范圍;
(2)由題意可知是
的兩根,從而有
,分析知極大值點(diǎn)
滿足
,于是
都可用
表示,也即不等式
中三個(gè)參數(shù)可化為關(guān)于一個(gè)參數(shù)
的不等式,這樣下面可利用導(dǎo)數(shù)研究相應(yīng)函數(shù)的性質(zhì)證明出題設(shè)不等式.注意范圍
.
解析:
(1)因?yàn)?/span>,因?yàn)楹瘮?shù)
存在與直線
平行的切線,所以
在
上有解,即
在
上有解,也即
在
上有解,所以
,得
,故所求實(shí)數(shù)
的取值范圍是
.
(2)因?yàn)?/span>,因?yàn)?/span>
,
①當(dāng)時(shí),
單調(diào)遞增無(wú)極值點(diǎn),不符合題意.
②當(dāng)或
時(shí),令
,設(shè)
的兩根為
和
,因?yàn)?/span>
為函數(shù)
的極大值點(diǎn),所以
,又
,所以
,所以
,則
,要證明
,只需要證明
因?yàn)?/span>
,
,令
,
,所以
,記
,
,則
,當(dāng)
時(shí),
,當(dāng)
時(shí),
,所以
,所以
,所以
在
上單調(diào)遞減,所以
,原題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面
是邊長(zhǎng)為2的正方形,側(cè)面
為正三角形,且面
面
,
分別為棱
的中點(diǎn).
(1)求證: 平面
;
(2)(文科)求三棱錐的體積;
(理科)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形四點(diǎn)坐標(biāo)為A(0,-2),C(4,2),B(4,-2),D(0,2).
(1)求對(duì)角線所在直線的方程;
(2)求矩形外接圓的方程;
(3)若動(dòng)點(diǎn)為外接圓上一點(diǎn),點(diǎn)
為定點(diǎn),問線段PN中點(diǎn)的軌跡是什么,并求出該軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和. (Ⅰ)若2Sn=3n+3.求{an}的通項(xiàng)公式;
(Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:
經(jīng)過橢圓
:
的左右焦點(diǎn)
,且與橢圓
在第一象限的交點(diǎn)為
,且
三點(diǎn)共線,直線
交橢圓
于
,
兩點(diǎn),且
(
).
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為2的正方體中,M是棱CC1的中點(diǎn).
(1)求B到面的距離;
(2)求BC與面所成角的正切值;
(3)求面與面ABCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a<0,函數(shù)f(x)=acosx+ +
,其中x∈[﹣
,
].
(1)設(shè)t= +
,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對(duì)區(qū)間[﹣ ,
]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com