日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

          在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

          (Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

          (Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn)的中點(diǎn)為,的交點(diǎn)為,求

          【答案】(Ⅰ)C: ;直線的直角坐標(biāo)方程 (Ⅱ)8

          【解析】

          (Ⅰ)由極坐標(biāo)方程與直角坐標(biāo)方程的互化公式可直接得出結(jié)果;

          (Ⅱ)先寫出直線的參數(shù)方程,代入曲線的普通方程,得到,再由直線的參數(shù)方程代入,得到,進(jìn)而可得出結(jié)果.

          (Ⅰ)曲線的直角坐標(biāo)方程為:;

          的直角坐標(biāo)方程為:

          (Ⅱ)直線的參數(shù)方程為參數(shù)),

          將其代入曲線的普通方程并整理得

          設(shè)兩點(diǎn)的參數(shù)分別為,則

          因?yàn)?/span>的中點(diǎn),故點(diǎn)的參數(shù)為

          設(shè)點(diǎn)的參數(shù)分別為,把代入整理得

          所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果一個(gè)三位數(shù)的十位上的數(shù)字比個(gè)位和百位上的數(shù)字都大,則稱這個(gè)三位數(shù)為“凸數(shù)”(如132),現(xiàn)從集合中任取3個(gè)互不相同的數(shù)字,排成一個(gè)三位數(shù),則這個(gè)三位數(shù)是“凸數(shù)”的概率為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,以原點(diǎn)為圓心,為半徑的定圓,與過原點(diǎn)且斜率為的動(dòng)直線交于、兩點(diǎn),在軸正半軸上有一個(gè)定點(diǎn),、三點(diǎn)構(gòu)成三角形,求:

          1的面積的表達(dá)式,并求出的取值范圍;

          2的外接圓的面積的表達(dá)式,并求出的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正整數(shù)數(shù)列的前項(xiàng)和為,前項(xiàng)積,若,則稱數(shù)列為“數(shù)列”.

          (1)判斷下列數(shù)列是否是數(shù)列,并說明理由;①22,4,8;②8,24,40,56

          (2)若數(shù)列數(shù)列,且.

          (3)是否存在等差數(shù)列是數(shù)列?請(qǐng)闡述理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的單調(diào)性;

          (2)若的兩個(gè)極值點(diǎn),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面四邊形中,,,中點(diǎn),,,將沿對(duì)角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )

          A. 平面

          B. 異面直線所成的角為

          C. 異面直線所成的角為

          D. 直線與平面所成的角為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線,過其焦點(diǎn)作斜率為1的直線交拋物線,兩點(diǎn),且線段的中點(diǎn)的縱坐標(biāo)為4.

          (1)求拋物線的標(biāo)準(zhǔn)方程;

          (2)若不過原點(diǎn)且斜率存在的直線與拋物線相交于、兩點(diǎn),且.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn).設(shè)橢圓的左頂點(diǎn)為,右焦點(diǎn)為,右準(zhǔn)線與軸交于點(diǎn),且為線段的中點(diǎn).

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若過點(diǎn)的直線與橢圓相交于另一點(diǎn)軸上方),直線與橢圓相交于另一點(diǎn),且直線垂直,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線的焦點(diǎn)為,是拋物線上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)為,過作拋物線準(zhǔn)線的垂線,垂足為,若,則的最大值為______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案