【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.已知直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
.
(1)設(shè)為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線與曲線
交于
,設(shè)
,且
,求實數(shù)
的值.
【答案】(1)(
為參數(shù));(2)
.
【解析】
(1)由直線的極坐標(biāo)方程求得直角坐標(biāo)方程
,將
代入,得到
,即可得到直線
的參數(shù)方程;
(2)將直線的參數(shù)方程與
的直角坐標(biāo)方程聯(lián)立,得
,由
,得
,由根與系數(shù)的關(guān)系即可計算出
的值.
(1)直線的極坐標(biāo)方程為
,
所以,即
,
因為為參數(shù),將
代入上式得
,
所以直線的參數(shù)方程為
(
為參數(shù));
(2)由,得
,
由,
代入,得
將直線的參數(shù)方程與
的直角坐標(biāo)方程聯(lián)立,
得,
由,解得
,
設(shè)點和點
分別對應(yīng)參數(shù)
、
為上述方程的根,
由韋達定理,,
,
由題意得,,
,
因為,所以
,
解得,或
,
因為,所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的傾斜角為
,且經(jīng)過點
,以坐標(biāo)原點O為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足|
,記點N的軌跡為曲線C.
(1)①設(shè)動點,記
是直線
的向上方向的單位方向向量,且
,以t為參數(shù)求直線
的參數(shù)方程
②求曲線C的極坐標(biāo)方程并化為直角坐標(biāo)方程;
(2)設(shè)直線與曲線C交于P,Q兩點,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
在
處的切線方程;
(2)討論極值點的個數(shù);
(3)若是
的一個極小值點,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程及直線
的普通方程;
(2)設(shè)直線與曲線
交于
,
兩點(
點在
點左邊)與直線
交于點
.求
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),過曲線
上的點
處的切線方程為
.
(1)若函數(shù)在
處有極值,求
的解析式;
(2)在(1)的條件下,求函數(shù)在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達圖.甲同學(xué)的成績雷達圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設(shè)成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是( )
A.這五年,出口總額之和比進口總額之和大
B.這五年,2015年出口額最少
C.這五年,2019年進口增速最快
D.這五年,出口增速前四年逐年下降
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com