日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓 的離心率為,依次連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為4.

          (1)求橢圓的方程;

          (2)過點(diǎn)且斜率為的直線交橢圓, 兩點(diǎn),設(shè)面積之比為(其中為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

          【答案】(1) (2)

          【解析】試題分析: 根據(jù)題意離心率為,依次連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為4,列出方程求出橢圓方程(2) 設(shè)直線方程為,聯(lián)立直線與橢圓方程,求出

          ,由題意,求出的取值范圍,求出的表達(dá)式,代入求出范圍

          解析:(1)∵橢圓的離心率為,且依次連接橢圓的四個(gè)頂點(diǎn)得到的菱形面積為4,

          ,∴,即橢圓方程為.

          (2)由題意得設(shè)直線方程為,其中,代入橢圓方程得: ,

          則有,從而有 ,①

          ,②

          由①②可得

          .又,因,

          ,又 ,

          從而有,得,解得.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位從一所學(xué)校招收某類特殊人才,對(duì)位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:

          例如,表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為.

          (Ⅰ)求的值;

          (Ⅱ)從參加測(cè)試的位學(xué)生中任意抽取位,求其中至少有一位運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;

          (III)從參加測(cè)試的位學(xué)生中任意抽取位,設(shè)運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為,求隨機(jī)變量的分布列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個(gè)零點(diǎn),則a的取值范圍為(  )

          A. B. C. D.

          【答案】D

          【解析】

          恰好有3個(gè)零點(diǎn), 等價(jià)于的圖象有三個(gè)不同的交點(diǎn),

          作出的圖象,根據(jù)數(shù)形結(jié)合可得結(jié)果.

          恰好有3個(gè)零點(diǎn),

          等價(jià)于有三個(gè)根,

          等價(jià)于的圖象有三個(gè)不同的交點(diǎn)

          作出的圖象,如圖,

          由圖可知,

          當(dāng)時(shí),的圖象有三個(gè)交點(diǎn),

          即當(dāng)時(shí),恰好有3個(gè)零點(diǎn),

          所以,的取值范圍是,故選D.

          【點(diǎn)睛】

          本題主要考查函數(shù)的零點(diǎn)與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點(diǎn)問題是高考的高頻考點(diǎn),考生需要對(duì)初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對(duì)稱性非常熟悉;另外,函數(shù)零點(diǎn)的幾種等價(jià)形式:函數(shù)的零點(diǎn)函數(shù)軸的交點(diǎn)方程的根函數(shù)的交點(diǎn).

          型】單選題
          結(jié)束】
          13

          【題目】設(shè)集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

          (1)若中點(diǎn),證明:平面;

          (2)當(dāng)時(shí),求直線與平面所成角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的頂點(diǎn)A的坐標(biāo)為(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在的直線方程為x-2y-5=0.

          (Ⅰ)求頂點(diǎn)C的坐標(biāo);

          (Ⅱ)求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.下圖(1)和下圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按, , , 分組,得到的頻率分布直方圖.

          (1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績(jī)小于60分的人數(shù);

          (2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?

          附:臨界值表及參考公式: , .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線y=k(x﹣m)與拋物線y2=2px(p>0)交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),OA⊥OB,OD⊥AB于D,點(diǎn)D在曲線x2+y2﹣4x=0上,則p=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)若函數(shù)存在兩個(gè)極值點(diǎn)且滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點(diǎn)P

          (1)證明:PF∥面ECD;
          (2)求二面角B﹣EC﹣A的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案