日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a,b為常數(shù),M{f(x)|f(x)=acosx+bsinx};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acodx+bsinx

          1證明:不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);

          2證明:當(dāng)f0(x)ÎM時(shí),f1(x)=f0(x+t)ÎM,這里t為常數(shù);

          3對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(

          答案:
          解析:

          1證明:假設(shè)有兩個(gè)不同的點(diǎn)(a,b),(c,d)對(duì)應(yīng)同一函數(shù),即F(a,b)=acosx+bsinxF(c,d)=ccosx+dsinx相同,即acosx+bsinx=ccosx+dsinx對(duì)于一切實(shí)數(shù)x成立.令x=0,得a=c;令,得b=d這與(a,b),(c,d)是兩個(gè)不同點(diǎn)矛盾,設(shè)不成立.故不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)同函數(shù).

          2證明:當(dāng)f0(x)ÎM時(shí),可得常數(shù)a0,b0,即f0(x)=a0cosx+b0sinx,

          f1(x)=f0(x+t)=a0cos(x+t)+b0sin(x+t)=(a0cost+b0sint)cosx+(b0cost-a0sint)sinx,因?yàn)?/span>a0,a0,t為常數(shù),設(shè)a0cost+b0sint=m,b0cost-a0sint=n,則m,n是常數(shù).所以f1(x)=mcosx+nsinxÎM

          3解:當(dāng)f0(x)ÎM時(shí),由此得f0(x+t)=mcosx+nsinx,其中m=a0cost+b0sintn=b0cost-a0sint,在映射F之下,f0(x+t)的原象是(m,n),則M1的原象是{(m,n)|m=a0cost+b0sintn=b0cost-a0sint,tÎR}.消去t,即在映射F之下,M1的原象{(m,n)|m2+n2=<span style='mso-char-type:symbol;mso-symbol-font-family:Symbol'>}是以原點(diǎn)為圓心,為半徑的圓

           


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.
          (1)證明:對(duì)F不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);
          (2)證明:當(dāng)f0(x)∈M時(shí),f1(x)=f0(x+t)∈M,這里t為常數(shù);
          (3)對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下點(diǎn)(m,n)的象屬于M1,問(wèn):由所有符合條件的點(diǎn)(m,n)構(gòu)成的圖形是什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:044

          設(shè)a,b為常數(shù),M{f(x)|f(x)=acosx+bsinx};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acodx+bsinx

          1證明:不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);

          2證明:當(dāng)f0(x)ÎM時(shí),f1(x)=f0(x+t)ÎM,這里t為常數(shù);

          3對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(x+t),tÎR},在映射F的作用下,M1作為象,求其原象,并說(shuō)明它是什么圖像.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.

          (1)證明:不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);

          (2)證明:當(dāng)f0(x)∈M時(shí),f1(x)=f0(x+t)∈M,這里t為常數(shù);

          (3)對(duì)于屬于M的一個(gè)固定值f0(x),得M1={f0(x+t),t∈R},在映射F的作用下,M1作為象,求其原象,并說(shuō)明它是什么圖象?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省無(wú)錫一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)a、b為常數(shù),M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一點(diǎn)(a,b)映射為函數(shù)acosx+bsinx.
          (1)證明:對(duì)F不存在兩個(gè)不同點(diǎn)對(duì)應(yīng)于同一個(gè)函數(shù);
          (2)證明:當(dāng)f(x)∈M時(shí),f1(x)=f(x+t)∈M,這里t為常數(shù);
          (3)對(duì)于屬于M的一個(gè)固定值f(x),得M1={f(x+t)|t∈R},若映射F的作用下點(diǎn)(m,n)的象屬于M1,問(wèn):由所有符合條件的點(diǎn)(m,n)構(gòu)成的圖形是什么?

          查看答案和解析>>