【題目】已知函數(shù)有兩個(gè)極值點(diǎn).
(1)求的取值范圍;
(2)的兩個(gè)極值點(diǎn)
,證明:
.
【答案】(1);(2)見(jiàn)解析
【解析】
(1)先對(duì)函數(shù)求導(dǎo),設(shè)
,根據(jù)題中條件可得
在
內(nèi)有兩個(gè)變號(hào)零點(diǎn),再對(duì)
求導(dǎo),判斷函數(shù)
單調(diào)性,分別討論
,
即可求出結(jié)果;
(2)先由題意可得到的極值點(diǎn)
,
就是
的零點(diǎn),即
,根據(jù)(1)中
單調(diào)性,以及
,可得
,
,再設(shè)
,
,對(duì)函數(shù)
求導(dǎo),結(jié)合題中條件,即可證明結(jié)論成立.
(1)的定義域?yàn)?/span>
,
.
設(shè),則由題意得,
在
內(nèi)有兩個(gè)變號(hào)零點(diǎn).
,令
,解得
;令
,解得
.
所以在
上單調(diào)遞增,在
上單調(diào)遞減,因此
.
當(dāng)時(shí),
,這時(shí)
在
上沒(méi)有變號(hào)零點(diǎn);
當(dāng)時(shí),
,
,又因?yàn)?/span>
,
,
,
所以在
和
內(nèi)分別有一個(gè)變號(hào)零點(diǎn).
綜上,的取值范圍為
.
(2)的極值點(diǎn)
,
就是
的零點(diǎn),即
.
因?yàn)?/span>在
單調(diào)遞增,而在
上單調(diào)遞減,且
,
所以,
.
設(shè),
,
則
.
因?yàn)?/span>時(shí),
,
所以當(dāng)時(shí),
,所以
在
上單調(diào)遞減.
又因?yàn)?/span>,所以當(dāng)
時(shí),
,即
,
因?yàn)?/span>,所以
,又因?yàn)?/span>
,所以
.
由于,而
在
上單調(diào)遞減.
所以,從而
,因此
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門(mén)窗損壞,若小區(qū)所有居民的門(mén)窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的分布列和數(shù)學(xué)期望.
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于集合A,定義了一種運(yùn)算“”,使得集合A中的元素間滿足條件:如果存在元素
,使得對(duì)任意
,都有
,則稱元素e是集合A對(duì)運(yùn)算“
”的單位元素.例如:
,運(yùn)算“
”為普通乘法;存在
,使得對(duì)任意
,都有
,所以元素1是集合R對(duì)普通乘法的單位元素.下面給出三個(gè)集合及相應(yīng)的運(yùn)算“
”:
①,運(yùn)算“
”為普通減法;
②,運(yùn)算“
”為矩陣加法;
③(其中M是任意非空集合),運(yùn)算“
”為求兩個(gè)集合的交集.
其中對(duì)運(yùn)算“”有單位元素的集合序號(hào)為( 。
A. ①②B. ①③C. ①②③D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:只要
,必有
,則稱
具有性質(zhì)
.
(1)若具有性質(zhì)
,且
,
,求
;
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列
是公比為正數(shù)的等比數(shù)列,
,
,
判斷
是否具有性質(zhì)
,并說(shuō)明理由;
(3)設(shè)是無(wú)窮數(shù)列,已知
.求證:“對(duì)任意
都具有性質(zhì)
”的充要條件為“
是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(
是正常數(shù))上有兩點(diǎn)
、
,焦點(diǎn)
,
甲:;
乙:;
丙:;
。.
以上是“直線經(jīng)過(guò)焦點(diǎn)
”的充要條件有幾個(gè)( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中有5只同型號(hào)的燈泡,其中有3只一等品,2只二等品,現(xiàn)在從中依次取出2只,設(shè)每只燈泡被取到的可能性都相同,請(qǐng)用“列舉法”解答下列問(wèn)題:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左、右焦點(diǎn)分別為
、
,離心率為
,過(guò)焦點(diǎn)
且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
Ⅰ
求橢圓C的方程;
Ⅱ
點(diǎn)
為橢圓C上一動(dòng)點(diǎn),連接
,
,設(shè)
的角平分線PM交橢圓C的長(zhǎng)軸于點(diǎn)
,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓經(jīng)過(guò)點(diǎn)
,左、右焦點(diǎn)分別是
,
,
點(diǎn)在橢圓上,且滿足
的
點(diǎn)只有兩個(gè).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)且不垂直于坐標(biāo)軸的直線
交橢圓
于
,
兩點(diǎn),在
軸上是否存在一點(diǎn)
,使得
的角平分線是
軸?若存在求出
,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com