日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),
          (Ⅰ)若,求函數(shù)的極值;
          (Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)若在區(qū)間)上存在一點(diǎn),使得成立,求的取值范圍.

          (Ⅰ)1 ;(Ⅱ)參見解答 ;(Ⅲ)

          解析試題分析:(Ⅰ)利用函數(shù) 的導(dǎo)函數(shù) 來研究的單調(diào)性,進(jìn)一步求極值. (Ⅱ)構(gòu)造函數(shù) 通過導(dǎo)函數(shù) 來研究的單調(diào)性,(Ⅲ)注意運(yùn)用第(Ⅱ)問產(chǎn)生的單調(diào)性結(jié)論來研究函數(shù) 在區(qū)間 上的增減性,判斷函數(shù)值取得負(fù)值時(shí) 的取值范圍,尤其注意在時(shí)不成立的證明,
          試題解析:(Ⅰ)當(dāng) 時(shí),  ,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6e/4/1uown2.png" style="vertical-align:middle;" />,
          ,當(dāng)時(shí),;當(dāng)時(shí),.
          所以單調(diào)減區(qū)間為;單調(diào)增區(qū)間為,
          時(shí),有極小值,極小值為1.                                 3分
          (Ⅱ),則
          ,               4分
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/95/a/1jjtj3.png" style="vertical-align:middle;" />所以.
          ,即,則恒成立,則上為增函數(shù);
          ,即,則時(shí),時(shí),
          所以此時(shí)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為                   7分
          (Ⅲ)由第(Ⅱ)問的解答可知只需在上存在一點(diǎn),使得.
          時(shí),只需,解得,又,所以滿足條件. 8分
          ,即時(shí),同樣可得,不滿足條件.            9分
          ,即時(shí),處取得最小值,           10分
          ,
          ,所以                        11分
          設(shè),考察式子,由,所以左端大于1,而右端小于1,所以不成立.
          當(dāng),即

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)是自然對(duì)數(shù)的底數(shù)).
          (1)若曲線處的切線也是拋物線的切線,求的值;
          (2)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與 在
          上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè),總有,
          則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
          (1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;
          (2)對(duì)任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
          (II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知處都取得極值.
          (Ⅰ) 求,的值;
          (Ⅱ)設(shè)函數(shù),若對(duì)任意的,總存在,使得、,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)),其圖像在點(diǎn)(1,)處的切線方程為.
          (1)求,的值;
          (2)求函數(shù)的單調(diào)區(qū)間和極值;
          (3)求函數(shù)在區(qū)間[-2,5]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),,其中為實(shí)數(shù).
          (1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;
          (2)若上是單調(diào)增函數(shù),試求的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),當(dāng)時(shí),有極大值;
          (1)求的值;
          (2)求函數(shù)的極小值。

          查看答案和解析>>