【題目】已知橢圓的離心率為
,過左焦點
且垂直于長軸的弦長為
.
(1)求橢圓的標準方程;
(2)點為橢圓
的長軸上的一個動點,過點
且斜率為
的直線
交橢圓
于
兩點,證明:
為定值.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
:
與直線
(
)交于
,
兩點.
(1)當時,分別求
在點
和
處的切線方程;
(2)軸上是否存在點
,使得當
變動時,總有
?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關系,在本校隨機調(diào)查了100名學生進行研究.研究結(jié)果表明:在數(shù)學成績及格的60名學生中有45人比較細心,另外15人比較粗心;在數(shù)學成績不及格的40名學生中有10人比較細心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;
數(shù)學成績及格 | 數(shù)學成績不及格 | 合計 | |
比較細心 | 45 | ||
比較粗心 | |||
合計 | 60 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關系?
參考數(shù)據(jù):獨立檢驗隨機變量的臨界值參考表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在各棱長為的直四棱柱
中,底面
為棱形,
為棱
上一點,且
(1)求證:平面平面
;
(2)平面將四棱柱
分成上、下兩部分,求這兩部分的體積之比.
(棱臺的體積公式為,其中
分別為上、下底面面積,
為棱臺的高)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)若在
處的切線與直線
平行,求
的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為
,證明
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間
上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)有如下結(jié)論:
①該函數(shù)為偶函數(shù);
②若,則
;
③其單調(diào)遞增區(qū)間是;
④值域是;
⑤該函數(shù)的圖象與直線有且只有一個公共點.(本題中
是自然對數(shù)的底數(shù))
其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,底面
是邊長為2的等邊三角形,
為
的中點.
(1)求證: 平面
;
(2)若四邊形是正方形,且
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com