【題目】已知橢圓的中心在坐標(biāo)原點(diǎn)
,其短半軸長為
,一個(gè)焦點(diǎn)坐標(biāo)為
,點(diǎn)
在橢圓
上,點(diǎn)
在直線
上的點(diǎn),且
.
證明:直線
與圓
相切;
求
面積的最小值.
【答案】證明見解析;
1.
【解析】
由題意可得橢圓
的方程為
,由點(diǎn)
在直線
上,且
知
的斜率必定存在,分類討論當(dāng)
的斜率為
時(shí)和斜率不為
時(shí)的情況列出相應(yīng)式子,即可得出直線
與圓
相切;
由
知,
的面積為
解:由題意,橢圓
的焦點(diǎn)在
軸上,且
,所以
.
所以橢圓的方程為
.
由點(diǎn)在直線
上,且
知
的斜率必定存在,
當(dāng)的斜率為
時(shí),
,
,
于是,
到
的距離為
,直線
與圓
相切.
當(dāng)的斜率不為
時(shí),設(shè)
的方程為
,與
聯(lián)立得
,
所以,
,從而
.
而,故
的方程為
,而
在
上,故
,
從而,于是
.
此時(shí),到
的距離為
,直線
與圓
相切.
綜上,直線與圓
相切.
由
知,
的面積為
,
上式中,當(dāng)且僅當(dāng)等號成立,
所以面積的最小值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系
,極坐標(biāo)系中
,弧
所在圓的圓心分別為
,曲線
是弧
,曲線
是弧
,曲線
是弧
,曲線
是弧
.
(1)分別寫出的極坐標(biāo)方程;
(2)直線的參數(shù)方程為
(
為參數(shù)),點(diǎn)
的直角坐標(biāo)為
,若直線
與曲線
有兩個(gè)不同交點(diǎn)
,求實(shí)數(shù)
的取值范圍,并求出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(
,
)的一條漸近線方程為
,點(diǎn)
在雙曲線上;拋物線
(
)的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合.
(1)求雙曲線和拋物線的標(biāo)準(zhǔn)方程;
(2)過焦點(diǎn)F作一條直線l交拋物線于A,B兩點(diǎn),當(dāng)直線l的斜率為時(shí),求線段
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1=(n∈N*),且點(diǎn)P1的坐標(biāo)為(1,-1).
(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,
,
線性回歸模型的殘差平方和
,
,
其中分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),
(1)若用線性回歸模型,求y關(guān)于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關(guān)于x的回歸方程為,且相關(guān)指數(shù)
.
①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預(yù)測溫度為35℃時(shí)該用哪種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù))
附:一組數(shù)據(jù)其回歸直線
的斜率和截距的最小二乘估計(jì)為
,
;相關(guān)指數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線
的極坐標(biāo)方程為
,直線
的極坐標(biāo)方程為
.
(Ⅰ)寫出曲線和直線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點(diǎn)
與曲線
交于不同兩點(diǎn)
,
的中點(diǎn)為
,
與
的交點(diǎn)為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)(
是常數(shù),且
).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)在
處取得極值時(shí),若關(guān)于
的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)求證:當(dāng),
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),以極軸為
軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
.
(1)寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換
得到曲線
,曲線
上任一點(diǎn)為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com