【題目】已知雙曲線(
,
)的一條漸近線方程為
,點(diǎn)
在雙曲線上;拋物線
(
)的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合.
(1)求雙曲線和拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)焦點(diǎn)F作一條直線l交拋物線于A,B兩點(diǎn),當(dāng)直線l的斜率為時(shí),求線段
的長(zhǎng)度.
【答案】(1);
(2)
【解析】
(1)由漸近線方程得,再由點(diǎn)在雙曲線上,代入后得
的一個(gè)方程,聯(lián)立后可解得
,得雙曲線方程,求出雙曲線的右焦點(diǎn)坐標(biāo),即為拋物線的焦點(diǎn)坐標(biāo),從而可得拋物線標(biāo)準(zhǔn)方程;
(2)由直線方程與拋物線方程聯(lián)立可解得交點(diǎn)坐標(biāo),然后由焦點(diǎn)弦長(zhǎng)公式求得弦長(zhǎng).
解:(1)因?yàn)殡p曲線(
,
)的漸近線方程為
,
所以①,又點(diǎn)
在雙曲線上,所以
②
由①②解得,
,
故雙曲線標(biāo)準(zhǔn)方程為;
設(shè)雙曲線的焦距為,因?yàn)?/span>
,得
,所以拋物線焦點(diǎn)為
,
即,所以拋物線的標(biāo)準(zhǔn)方程為
.
(2)設(shè)直線交拋物線于
,
,
聯(lián)立得
即
,
故.
由拋物線定義知,
,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來(lái)越受到人們的喜愛(ài),各大購(gòu)物網(wǎng)站為增加收入,促銷策略越來(lái)越多樣化,促銷費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站2017年1-8月促銷費(fèi)用(萬(wàn)元)和產(chǎn)品銷量(萬(wàn)件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)可知與
具有線性相關(guān)關(guān)系,請(qǐng)建立
關(guān)于
的回歸方程
(系數(shù)精確到
);
(2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量,
,則每位員工每日獎(jiǎng)勵(lì)100元;
,則每位員工每日獎(jiǎng)勵(lì)150元;
,則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷量
服從正態(tài)分布
,請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元.(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位)
參考數(shù)據(jù): ,
,其中
,
分別為第
個(gè)月的促銷費(fèi)用和產(chǎn)品銷量,
.
參考公式:
(1)對(duì)于一組數(shù)據(jù),
,
,
,其回歸方程
的斜率和截距的最小二乘估計(jì)分別為
,
.
(2)若隨機(jī)變量服從正態(tài)分布
,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等腰梯形中,
,
是
的中點(diǎn).將
沿
折起后如圖2,使二面角
成直二面角,設(shè)
是
的中點(diǎn),
是棱
的中
點(diǎn).
(1)求證:;
(2)求證:平面平面
;
(3)判斷能否垂直于平面
,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)為曲線
上的動(dòng)點(diǎn),點(diǎn)
在線段
上,且滿足
,求點(diǎn)
的軌跡
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為
,點(diǎn)
在曲線
上,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且
.
(1)求證:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:(
)的離心率是
,
,
分別為橢圓E的左右頂點(diǎn),B為上頂點(diǎn),
的面積為2.直線l過(guò)點(diǎn)
且與橢圓E交于P,Q兩點(diǎn)(P,Q異于
,
)
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)求的面積最大值;
(3)設(shè)直線與直線
的斜率分別為
,
,求證:
為常數(shù),并求出這個(gè)常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且sin2A+sin2B+sin2C=sinAsinB+sinBsinC+sinCsin A.
(1)證明:△ABC是正三角形;
(2)如圖,點(diǎn)D在邊BC的延長(zhǎng)線上,且BC=2CD,AD,求sin∠BAD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn)
,其短半軸長(zhǎng)為
,一個(gè)焦點(diǎn)坐標(biāo)為
,點(diǎn)
在橢圓
上,點(diǎn)
在直線
上的點(diǎn),且
.
證明:直線
與圓
相切;
求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在
的為劣質(zhì)品,在
的為優(yōu)等品,在
的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損
元,優(yōu)等品每件盈利
元,特優(yōu)品每件盈利
元,以這
件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤(rùn);
(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬(wàn)元)對(duì)年銷售量
(單位:萬(wàn)件)的影響,對(duì)該企業(yè)近
年的年?duì)I銷費(fèi)用
和年銷售量
,
數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.
表中,
,
,
.
根據(jù)散點(diǎn)圖判斷,可以作為年銷售量
(萬(wàn)件)關(guān)于年?duì)I銷費(fèi)用
(萬(wàn)元)的回歸方程.
①求關(guān)于
的回歸方程;
②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營(yíng)銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤(rùn)
營(yíng)銷費(fèi)用,取
)
附:對(duì)于一組數(shù)據(jù),
,
,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com