日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C的對邊分別為ab,c,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

          1)證明:△ABC是正三角形;

          2)如圖,點(diǎn)D在邊BC的延長線上,且BC2CD,AD,求sinBAD的值.

          【答案】1)證明見解析;(2

          【解析】

          1)由已知利用正弦定理可得,再配方得,則,因此是正三角形;

          2)由已知條件可得,再由余弦定理可得,又,利用正弦定理即可得到結(jié)論.

          1)證明:∵sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

          a2+b2+c2ab+ac+bc,∴2a2+2b2+2c22ab+2ac+2bc

          ∴(ab2+bc2+ac20,∴abc

          ∴△ABC為等邊三角形;

          2)∵△ABC是等邊三角形,BC2CD,

          AC2CD,∠ACD120°,

          ∴在△ACD中,由余弦定理,得AD2AC2+CD22ACCDcosACD,

          74CD2+CD24CDCDcos120°,∴CD1,

          在△ABC中,BD3CD3,

          由正弦定理,得sinBAD

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列,函數(shù)

          1)若正項(xiàng)數(shù)列滿足,試求出, , ,由此歸納出通項(xiàng),并加以證明;

          2)若正項(xiàng)數(shù)列滿足nN*),數(shù)列的前項(xiàng)和為Tn,且,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為正數(shù),其前項(xiàng)和為,,.

          1)求,的值;

          2)求證:數(shù)列為等差數(shù)列;

          3)設(shè)數(shù)列滿足,,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線,)的一條漸近線方程為,點(diǎn)在雙曲線上;拋物線)的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合.

          1)求雙曲線和拋物線的標(biāo)準(zhǔn)方程;

          2)過焦點(diǎn)F作一條直線l交拋物線于A,B兩點(diǎn),當(dāng)直線l的斜率為時(shí),求線段的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】受電視機(jī)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺電視機(jī)的利潤與該電視機(jī)首次出現(xiàn)故障的時(shí)間有關(guān).某電視機(jī)制造廠生產(chǎn)甲、乙兩種型號電視機(jī),保修期均為2年,現(xiàn)從該廠已售出的兩種型號電視機(jī)中各隨機(jī)抽取50臺,統(tǒng)計(jì)數(shù)據(jù)如下:

          品牌

          首次出現(xiàn)故障時(shí)間x(年)

          電視機(jī)數(shù)量(臺)

          3

          5

          42

          8

          42

          每臺利潤(千元)

          1

          2

          3

          1.8

          2.8

          將頻率視為概率,解答下列問題:

          1)從該廠生產(chǎn)的甲種型號電視機(jī)中隨機(jī)抽取一臺,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

          2)該廠預(yù)計(jì)今后這兩種型號電視機(jī)銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號電視機(jī),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種型號電視機(jī)?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1(n∈N*),且點(diǎn)P1的坐標(biāo)為(1,-1).

          (1)求過點(diǎn)P1,P2的直線l的方程;

          (2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

          溫度x/℃

          21

          23

          24

          27

          29

          32

          產(chǎn)卵數(shù)y/個(gè)

          6

          11

          20

          27

          57

          77

          經(jīng)計(jì)算得:

          ,線性回歸模型的殘差平方和,,

          其中分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),

          1)若用線性回歸模型,求y關(guān)于x的回歸方程(精確到0.1);

          2)若用非線性回歸模型求得y關(guān)于x的回歸方程為,且相關(guān)指數(shù).

          ①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.

          ②用擬合效果好的模型預(yù)測溫度為35℃時(shí)該用哪種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù))

          附:一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)為;相關(guān)指數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是( )

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案