【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、
、
三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有
A.種B.
種
C.種D.
種
【答案】D
【解析】
根據(jù)題意,分2步進行①把5個個參會國的人員分成三組,一種是按照1、1、3;另一種是1、2、2;由組合數(shù)公式可得分組的方法數(shù)目,②,將分好的三組對應三家酒店;由分步計數(shù)原理計算可得答案.
根據(jù)題意,分2步進行
①、五個參會國要在a、b、c三家酒店選擇一家,且這三家至少有一個參會國入住,
∴可以把5個國家人分成三組,一種是按照1、1、3;另一種是1、2、2
當按照1、1、3來分時共有C53=10種分組方法;
當按照1、2、2來分時共有 種分組方法;
則一共有 種分組方法;
②、將分好的三組對應三家酒店,有 種對應方法;
則安排方法共有 種;
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】若直角坐標平面內(nèi)的兩點滿足條件:①
都在函數(shù)
的圖象上;②
關于原點對稱.則稱點對
是函數(shù)
的一對“友好點對”(點對
與
看作同一對“友好點對”).已知函數(shù)
(
且
),若此函數(shù)的“友好點對”有且只有一對,則
的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的左焦點為
,過點
的直線交橢圓于
,
兩點,
的最大值為
,
的最小值為
,滿足
.
(1)若線段垂直于軸時,
,求橢圓的方程;
(2)設線段的中點為
,
的垂直平分線與
軸和
軸分別交于
,
兩點,
是坐標原點,記
的面積為
,
的面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量
之間的一組數(shù)據(jù),如下表所示:
銷售單價 | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)統(tǒng)計數(shù)據(jù),求出關于
的回歸直線方程,并預測月銷售量不低于12萬件時銷售單價的最大值;
(2)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵.現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,下個月分別在兩個不同的網(wǎng)店進行銷售,求這兩個網(wǎng)店下個月獲得獎勵的總額的分布列及其數(shù)學期望.
參考公式:對于一組數(shù)據(jù),
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
參考數(shù)據(jù):,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列命題:
①為偶函數(shù);②
的最大值為2;
③在
內(nèi)的零點個數(shù)為18;
④的任何一個極大值都大于1.
其中所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為
,右焦點為
,點
在橢圓
上.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點,直線
分別與
軸交于點
,在
軸上,是否存在點
,使得無論非零實數(shù)
怎樣變化,總有
為直角?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com