日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 規(guī)定
          Cmx
          =
          x(x-1)…(x-m+1)
          m!
          ,其中x∈R,m是正整數(shù),且CX0=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
          (1)求C-153的值;
          (2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式并給予證明;若不能請(qǐng)說(shuō)明理由.
          (3)已知組合數(shù)Cnm是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),Cxm∈Z.
          (1)由題意C-153=
          -15×(-16)×(-17)
          3!
          =-C173=-680   …(4分)
          (2)性質(zhì)①Cnm=Cnn-m不能推廣,例如x=
          2
          時(shí),
          C1
          2
          有定義,但
          C
          2
          -1
          2
          無(wú)意義;
          性質(zhì)②Cnm+Cnm-1=Cn+1m 能推廣,它的推廣形式為Cxm+Cxm-1=Cx+1m,x∈R,m∈N*
          證明如下:當(dāng)m=1時(shí),有Cx1+Cx0=x+1=Cx+11;   …(1分)
          當(dāng)m≥2時(shí),有Cxm+Cxm-1=
          x(x-1)…(x-m+1)
          m!
          +
          x(x-1)…(x-m+2)
          (m-1)!
          =
          x(x-1)…(x-m+2)
          (m-1)!
          ×(
          (x-m+1)
          m
          +1)
          =
          x(x-1)…(x-m+1)(x+1)
          m!
          =Cx+1m,(6分)
          (3)由題意,x∈Z,m是正整數(shù)時(shí)
          當(dāng)x≥m時(shí),組合數(shù)Cxm∈z成立;
          當(dāng)0≤x<m 時(shí),
          Cmx
          =
          x(x-1)(x-2)???0???(x-m+1)
          m!
          =0∈Z
          ,結(jié)論也成立;
          當(dāng)x<0時(shí),因?yàn)?x+m-1>0,∴Cxm=
          x(x-1)…(x-m+1)
          m!
          =(-1)m
          (-x+m-1)…(-x+1)(-x)
          m!
          =(-1)mC-x+m-1m∈z(7分)
          綜上所述當(dāng)x∈Z,m是正整數(shù)時(shí),Cxm∈Z
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          規(guī)定
          C
          m
          x
          =
          x(x-1)…(x-m+1)
          m!
          ,其中x∈R,m是正整數(shù),且Cx0=1,這是組合數(shù)Cnm(n、m是正整數(shù),且m≤n)的一種推廣.
          (1) 求C-155的值;
          (2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推廣到Cxm(x∈R,m是正整數(shù))的情形?
          若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          規(guī)定Cmx=
          x(x-1)…(x-m+1)
          m!
          ,其中x∈R,m是正整數(shù),且C0x=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
          (1)求C3-15的值;
          (2)設(shè)x>0,當(dāng)x為何值時(shí),
          C
          3
          x
          (C
          1
          x
          )2
          取得最小值?
          (3)組合數(shù)的兩個(gè)性質(zhì);
          ①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
          是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.
          變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax0=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
          (1)求A-153的值;
          (2)排列數(shù)的兩個(gè)性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
          (3)確定函數(shù)Ax3的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          規(guī)定
          C
          m
          x
          =
          x(x-1)…(x-m+1)
          m!
          ,其中x∈R,m是正整數(shù),且
          C
          0
          x
          =1
          ,這是組合數(shù)
          C
          m
          n
          (n、m是正整數(shù),且m≤n)的一種推廣.
          (1)求
          C
          3
          -15
          的值;
          (2)設(shè)x>0,當(dāng)x為何值時(shí),
          C
          3
          x
          (
          C
          1
          x
          )
          2
          取得最小值?
          (3)組合數(shù)的兩個(gè)性質(zhì);①
          C
          m
          n
          =
          C
          n-m
          n
          ;②
          C
          m
          n
          +
          C
          m-1
          n
          =
          C
          m
          n+1
          .是否都能推廣到
          C
          m
          x
          (x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          規(guī)定
          C
          m
          x
          =
          x(x-1)…(x-m+1)
          m!
          ,其中x∈R,m是正整數(shù),且CX0=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
          (1)求C-153的值;
          (2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式并給予證明;若不能請(qǐng)說(shuō)明理由.
          (3)已知組合數(shù)Cnm是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),Cxm∈Z.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案