【題目】已知橢圓的焦點(diǎn)到短軸的端點(diǎn)的距離為
,離心率為
.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
交橢圓
于
兩點(diǎn),過點(diǎn)
作平行于
軸的直線
,交直線
于點(diǎn)
,求證:直線
恒過定點(diǎn).
【答案】(1);(2)證明見解析.
【解析】
(1)由題意可得,由離心率公式可得
,再由
的關(guān)系可得
,即可得到所求的橢圓方程;
(2)先求出直線的斜率不存在時直線
的方程,直線
過點(diǎn)
;當(dāng)直線
的斜率存在,設(shè)過點(diǎn)
的直線
的方程為
,聯(lián)立橢圓方程,運(yùn)用韋達(dá)定理,以及直線的斜率公式,結(jié)合三點(diǎn)共線的條件,即可得到定點(diǎn)且定點(diǎn)為
.
(1)由橢圓的焦點(diǎn)到短軸的端點(diǎn)的距離為
,則
,
又離心率為,即
,解得
,∴
,
∴橢圓的方程為
.
(2)證明:當(dāng)直線的斜率不存在,即方程
,
代入橢圓方程可得,即有
,
直線的方程為
,直線
過點(diǎn)
.
當(dāng)直線的斜率存在,設(shè)過點(diǎn)
的直線
的方程為
,
由,消去
整理得
.
由恒成立,
設(shè),
則①,
②,
,
由,
由①②可得,
則,即
綜上可得直線過定點(diǎn)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知矩形ABCD滿足AB=5,,沿平行于AD的線段EF向上翻折(點(diǎn)E在線段AB上運(yùn)動,點(diǎn)F在線段CD上運(yùn)動),得到如圖②所示的三棱柱
.
⑴若圖②中△ABG是直角三角形,這里G是線段EF上的點(diǎn),試求線段EG的長度x的取值范圍;
⑵若⑴中EG的長度為取值范圍內(nèi)的最大整數(shù),且線段AB的長度取得最小值,求二面角的值;
⑶在⑴與⑵的條件都滿足的情況下,求三棱錐A-BFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)滿足
,現(xiàn)給出下列命題:①函數(shù)
是以2為周期的周期函數(shù);②函數(shù)
是以4為周期的周期函數(shù);③函數(shù)
為奇函數(shù);④函數(shù)
為偶函數(shù),則其中真命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,
為
的中點(diǎn),將
沿直線
翻折成
,連結(jié)
,
為
的中點(diǎn),則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則
;
④若,當(dāng)三棱錐
的體積最大時,三棱錐
的外接球的表面積是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計年銷量(萬件)與廣告費(fèi)
(萬元)之間的函數(shù)關(guān)系為
,已知生產(chǎn)此產(chǎn)品的年固定投入為
萬元,每生產(chǎn)
萬件此產(chǎn)品仍需要投入
萬元,若年銷售額為“年生產(chǎn)成本的
”與“年廣告費(fèi)的
”之和,而當(dāng)年產(chǎn)銷量相等:
(1)試將年利潤(萬元)表示為年廣告費(fèi)
(萬元)的函數(shù);
(2)求當(dāng)年廣告費(fèi)投入多少萬元時,企業(yè)利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com