【題目】已知函數(shù),
為
的導數(shù),函數(shù)
在
處取得最小值.
(1)求證:;
(2)若時,
恒成立,求
的取值范圍.
【答案】(1)見解析; (2).
【解析】
(1)對求導,令
,求導研究單調(diào)性,分析可得存在
使得
,即
,即得證;
(2)分,
兩種情況討論,當
時,轉(zhuǎn)化
利用均值不等式即得證;當
,
有兩個不同的零點
,
,分析可得
的最小值為
,分
,
討論即得解.
(1)由題意,
令,則
,知
為
的增函數(shù),
因為,
,
所以,存在使得
,即
.
所以,當時
,
為減函數(shù),
當時
,
為增函數(shù),
故當時,
取得最小值,也就是
取得最小值.
故,于是有
,即
,
所以有,證畢.
(2)由(1)知,的最小值為
,
①當,即
時,
為
的增函數(shù),
所以,
,
由(1)中,得
,即
.
故滿足題意.
②當,即
時,
有兩個不同的零點
,
,
且,即
,
若時
,
為減函數(shù),(*)
若時
,
為增函數(shù),
所以的最小值為
.
注意到時,
,且此時
,
(ⅰ)當時,
,
所以,即
,
又
,
而,所以
,即
.
由于在下,恒有
,所以
.
(ⅱ)當時,
,
所以,
所以由(*)知時,
為減函數(shù),
所以,不滿足
時,
恒成立,故舍去.
故滿足條件.
綜上所述:的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】受傳統(tǒng)觀念的影響,中國家庭教育過程中對子女教育的投入不遺余力,基礎(chǔ)教育消費一直是中國家庭教育的重頭戲,升學壓力的逐漸增大,特別是對于升入重點學校的重視,導致很多家庭教育支出增長較快,下面是某機構(gòu)隨機抽樣調(diào)查某二線城市2012-2018年的家庭教育支出的折線圖.
(附:年份代碼1-7分別對應(yīng)的年份是2012-2018)
(1)從圖中的折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請求出相關(guān)系數(shù)r(精確到0.001),并指出是哪一層次的相關(guān)性?(相關(guān)系數(shù),相關(guān)性很強;
,相關(guān)性一般;
,相關(guān)性較弱).
(2)建立y關(guān)于t的回歸方程;
(3)若2019年該地區(qū)家庭總支出為10萬元,預測家庭教育支出約為多少萬元?
附注:參考數(shù)據(jù):,
,
,
,
.
參考公式:,回歸方程
,
其中,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,不等式
的解集是
.
(1)求的解析式;
(2)不等式組的正整數(shù)解只有一個,求實數(shù)k取值范圍;
(3)若對于任意,不等式
恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩臺不同機器和
生產(chǎn)同一種產(chǎn)品各
萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取
件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標準規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到
的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到
的產(chǎn)品,質(zhì)量等級為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過
的情況下,認為
機器生產(chǎn)的產(chǎn)品比
機器生產(chǎn)的產(chǎn)品好;
|
| 合計 | |
良好以上(含良好) | |||
合格 | |||
合計 |
(和
生產(chǎn)的產(chǎn)品中各隨機抽取
件,求
件產(chǎn)品中
機器生產(chǎn)的優(yōu)等品的數(shù)量多于
機器生產(chǎn)的優(yōu)等品的數(shù)量的概率;
(3)已知優(yōu)秀等級產(chǎn)品的利潤為元/件,良好等級產(chǎn)品的利潤為
元/件,合格等級產(chǎn)品的利潤為
元/件,
機器每生產(chǎn)
萬件的成本為
萬元,
機器每生產(chǎn)
萬件的成本為
萬元;該工廠決定:按樣本數(shù)據(jù)測算,若收益之差不超過
萬元,則仍然保留原來的兩臺機器.你認為該工廠會仍然保留原來的兩臺機器嗎?
附:1.獨立性檢驗計算公式:.
2.臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線和點
,直線
與拋物線
交于不同兩點
,
,直線
與拋物線
交于另一點
.給出以下判斷:
①直線與直線
的斜率乘積為
;
②軸;
③以為直徑的圓與拋物線準線相切.
其中,所有正確判斷的序號是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
以
為極點,
軸正半軸為極軸建立極坐標系,設(shè)點
在曲線
上,點
在曲線
上,且
為正三角形.
(1)求點,
的極坐標;
(2)若點為曲線
上的動點,
為線段
的中點,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線
的焦點,點
、
在拋物線上,且
、
、
三點共線.若圓
的直徑為
.
(1)求拋物線的標準方程;
(2)過點的直線
與拋物線交于點
,
,分別過
、
兩點作拋物線
的切線
,
,證明直線
,
的交點在定直線上,并求出該直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),若函數(shù)
恰有一個零點,求函數(shù)
的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,
為
的中點,
、
分別是
、
上的動點(含端點),且滿足
.當
、
運動時,下列結(jié)論中正確的個數(shù)是( )
①平面平面
;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面
所成的銳二面角范圍為
.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com