日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)已知x>0或x<-1,求證:ln<;

          (Ⅱ)已知函數(shù)y=在(0,+∞)上單調(diào)遞增,求證:當xl、x2>0時,f(x1)+f(x2)<f(x1+x2);

          (Ⅲ)求證:(n≥2,n∈N*).

          答案:證明:(Ⅰ)要證ln,只證ln(1+)<.           

          令t=,只證ln(1+t)<t.

          令g(t)=ln(1+t)-t(t>-1,且t≠0,此時x>0或x<-1).

          則g′(t)=.

          當-1<t<0時,g′(t)>0;當t>0時,g′(t)<0.∴當t>-1時,g(t)≤g(0),即ln(1+t)-t≤0.∵t≥-1且t≠0,∴l(xiāng)n(1+t)<t.∴l(xiāng)n成立. 

          (Ⅱ)由x1>0,x2>0,有x1+x2>x1,x1+x2>x2.∵在(0,+∞)上單調(diào)遞增,

          ∴f(x1)<f(x1+x2),f(x2)<f(x1+x2).

          ∴f(x1)+f(x2)<f<x1+x2). 

          (Ⅲ)由(Ⅱ)推廣,有f(x1)+f<x2)+…+f<xn)<f(x1+x2+…+xn).

          要證ln2+ln3+…+lnn>,

          只證ln22+ln32+…+lnn2.

          即證ln+ln+…+ln

          令f(x)=xlnx(x>o),則=lnx在(0,+∞)上單調(diào)遞增.

          要證原不等式成立,只證

          .

          =(其中k=l,2,…,n-1).

          .

          ∴1n()<ln(l),

          又由(Ⅰ),ln(1)<(n≥2),∴l(xiāng)n()<<0,

          ∴()ln()<.

          .

          ∴原不等式成立. 

          (Ⅲ)另證:∵ln2+ln3+…+lnn>ln2.

          ln2>ln2>3ln2>11n8>18>e,

          <3n-3<n2+nn2-2n+3>0(n-1)2+2>0.

          .∴結(jié)論成立.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知集合A={x|
          1
          x
          ≥1}
          ,集合B={x|2x-2>0},則A∩CRB=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•成都二模)已知全集U={x|x>0},M={x|x2<2x},則?UM=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:成都二模 題型:單選題

          已知全集U={x|x>0},M={x|x2<2x},則?UM=( 。
          A.{x|x≥2}B.{x|x>2}C.{x|x≤0或x≥2}D.{x|0<x<2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省高考數(shù)學(xué)一輪復(fù)習:2.2 一元二次不等式(1)(解析版) 題型:選擇題

          已知=(x,-1)與=(1,),則不等式≤0的解集為( )
          A.{x|x≤-1或x≥1}
          B.{x|-1≤x<0或x≥1}
          C.{x|x≤-1或0≤x≤1}
          D.{x|x≤-1或0<x≤1}

          查看答案和解析>>

          同步練習冊答案