日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若將函數(shù)y=2sin2x的圖象向左平移 個單位長度,則平移后的圖象的對稱軸為(
          A.x= (k∈Z)
          B.x= + (k∈Z)
          C.x= (k∈Z)
          D.x= + (k∈Z)

          【答案】B
          【解析】解:將函數(shù)y=2sin2x的圖象向左平移 個單位長度,得到y(tǒng)=2sin2(x+ )=2sin(2x+ ),

          由2x+ =kπ+ (k∈Z)得:x= + (k∈Z),

          即平移后的圖象的對稱軸方程為x= + (k∈Z),

          故選:B.

          【考點精析】認(rèn)真審題,首先需要了解正弦函數(shù)的對稱性(正弦函數(shù)的對稱性:對稱中心;對稱軸),還要掌握函數(shù)y=Asin(ωx+φ)的圖象變換(圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
          (1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
          (2)若直線l不經(jīng)過第二象限,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
          (1)若a= ,求A∪B;
          (2)若A∩B=,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x)=|sin(ωx+ )|(ω>1)在區(qū)間[π, π]上單調(diào)遞減,則實數(shù)ω的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知t為實數(shù),函數(shù)f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
          (1)若函數(shù)y=g(ax+1)﹣kx是偶函數(shù),求實數(shù)k的值;
          (2)當(dāng)x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
          (3)設(shè)t=4,當(dāng)x∈[m,n]時,函數(shù)y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在利用“五點法”作函數(shù)f(x)=Asin(ωx+)+t(其中A>0, )的圖象時,列出了如表格中的部分?jǐn)?shù)據(jù).

          x

          ωx+

          0

          π

          f(x)

          2

          6

          2

          ﹣2

          2


          (1)請將表格補(bǔ)充完整,并寫出f(x)的解析式.
          (2)若 ,求f(x)的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p:點M(1,3)不在圓(x+m)2+(y﹣m)2=16的內(nèi)部,命題q:“曲線 表示焦點在x軸上的橢圓”,命題s:“曲線 表示雙曲線”.
          (1)若“p且q”是真命題,求m的取值范圍;
          (2)若q是s的必要不充分條件,求t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=(
          A.0
          B.﹣2
          C.1
          D.﹣4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”. (I) 已知二次函數(shù)f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
          (II) 設(shè)f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
          (III) 設(shè)f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案