日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在圖的幾何體中,面ABC∥面DEFG,∠BAC=∠EDG=120°,四邊形ABED是矩形,四邊形ADGC是直角梯形,∠ADG=90°,四邊形DEFG是梯形,EF∥DG,AB=AC=AD=EF=1,DG=2.
          (1)求證:FG⊥面ADF;
          (2)求四面體CDFG的體積.
          考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面垂直的判定
          專題:空間位置關(guān)系與距離
          分析:(1)首先,作DG的中點(diǎn)為H,證明四邊形DEFH為平行四邊形,然后,得到AD⊥平面EDGF,從而得證;
          (2)先證明CO⊥平面EDGF,(取DG的中點(diǎn)為O),得到△DEF正三角形,然后,結(jié)合四面體CDFG的體積V=
          1
          3
          S△DFG•CO進(jìn)行求解.
          解答: 解:(1)連接DF,AF,作DG的中點(diǎn)為H,連接EH,
          ∵EF∥DK,EF=DH=ED=1,
          ∴四邊形DEFH為菱形,
          ∴EF∥HG,EF=HG,
          ∴四邊形DEFH為平行四邊形,
          ∴FG∥EH,
          ∴FG⊥DF,
          ∵∠ADG=90°,AD⊥DG,AD⊥ED,
          ∴AD⊥平面EDGF,
          ∴AD⊥FG,
          ∵FG⊥DF,AD∩DF=D,
          ∴FG⊥面ADF;
          (2)取DG的中點(diǎn)為O,連接FO,CO,F(xiàn)D,
          ∵DO∥AC,DO=AC,
          ∴ADOC平行四邊形,
          ∴CO∥AD,CO=AD=1,
          根據(jù)(1)知,AD⊥平面EDGF,
          ∴CO⊥平面EDGF,
          ∴ED=EF=1,∠DEF=60°,
          ∴△DEF正三角形,
          ∴DF=1,∠FDG=60°,
          ∴S△DFG=
          1
          2
          •DF•DG•sin∠FDG=
          3
          2

          ∴四面體CDFG的體積V=
          1
          3
          S△DFG•CO=
          1
          3
          ×
          3
          2
          ×1
          =
          3
          6
          點(diǎn)評(píng):本題重點(diǎn)考查了空間中平行關(guān)系和垂直關(guān)系的判斷方法、空間幾何體的體積求解等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          -x2+2x+1,x≥0
          -x+1,x<0
          ,則函數(shù)g(x)=f(x)-e-x的零點(diǎn)個(gè)數(shù)是( 。
          A、4B、3C、2D、1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)滿足2f(x+2)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=lnx+ax(a<-
          1
          2
          ),當(dāng)x∈(-4,-2)時(shí),f(x)的最大值為-4.求x∈(0,2)時(shí)f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1,a2=
          1
          2
          ,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*
          (Ⅰ)令bn=a2n-1,判斷{bn}是否為等差數(shù)列,并求出bn;
          (Ⅱ)記{an}的前2n項(xiàng)的和為T2n,求T2n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示的電路圖,設(shè)命題p:開關(guān)K閉合,命題q:開關(guān)K1閉合,命題s:開關(guān)K2閉合,命題t:開關(guān)K3閉合.
          (1)寫出燈泡A亮的充要條件;
          (2)寫出燈泡B不亮的充分不必要條件;
          (3)寫出燈泡C亮的必要不充分條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0≤φ≤
          π
          2
          )在x∈(0,7π)內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),ymax=3;當(dāng)x=6π時(shí),ymin=-3.
          (1)求此函數(shù)的解析式;
          (2)求此函數(shù)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知公差不為零的等差數(shù)列{an}的前5項(xiàng)和為30,且a2為a1和a4的等比中項(xiàng).
          (1)求{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
          (2)若數(shù)列{bn}滿足
          bn+1
          bn
          =
          Sn
          n
          (n∈N*),且b1=1,求數(shù)列{
          n
          bn+1
          }的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足3Sn=4028+an(n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)f(n)表示該數(shù)列的前n項(xiàng)的乘積,問n取何值時(shí),f(n)有最大值?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+1=2an,求使不等式
          a
          2
          1
          +
          a
          2
          2
          +…+
          a
          2
          n
          <5×2n+1成立的n的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案