日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)拋物線的頂點在原點,準(zhǔn)線方程為,則拋物線方程是(   )
          A.,B.
          C.D.
          C

          試題分析:令拋物線的方程為,由于拋物線的準(zhǔn)線方程為,因而,即,所以拋物線的方程為。故選C。
          點評:求拋物線的方程,前提是設(shè)拋物線的方程,而設(shè)置拋物線可結(jié)合焦點,像本題通過畫圖,知道拋物線的焦點在x軸的正半軸上,因而可令拋物線的方程為y2=2px(p>0)(式子中的x (y)對應(yīng)x(y)軸,2px前面是正(負(fù))的對應(yīng)正(負(fù))半軸)。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          已知橢圓的離心率,過點的直線與原點的距離為。⑴求橢圓的方程;⑵已知定點,若直線與橢圓交于兩點,問:是否存在的值,使以為直徑的圓過點?請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)設(shè)直線與橢圓相交于兩個不同的點,與軸相交于點,記為坐標(biāo)原點.
          (1)證明:
          (2)若的面積及橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知是橢圓的兩個焦點,為橢圓上的一點,且,則的面積是(  )
          A.7B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓的上、下頂點分別為,左、右焦點分別為、,若四邊形是正方形,則此橢圓的離心率等于
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分) 已知在拋物線上,的重心與此拋物線的焦點F重合。
          ⑴ 寫出該拋物線的標(biāo)準(zhǔn)方程和焦點F的坐標(biāo);
          ⑵ 求線段BC的中點M的坐標(biāo);
          ⑶ 求BC所在直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分15分)
          給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為
          (1)求橢圓C和其“準(zhǔn)圓”的方程;
          (2)若點是橢圓C的“準(zhǔn)圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;
          (3)在橢圓C的“準(zhǔn)圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          中心在坐標(biāo)原點的橢圓,焦點在x軸上,焦距為4,離心率為,則該橢圓的方程為
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,是半圓的直徑,是半圓(除端點)上的任意一點.在線段的延長線上取點,使,試求動點的軌跡方程

          查看答案和解析>>

          同步練習(xí)冊答案