日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題12分)如圖,在長方體中,點在棱的延長線上,且下標(biāo)

          (1)求證:∥平面
          (2)求證:平面平面;
          (3)求四面體的體積.

          解:(Ⅰ)證明:連 
          四邊形是平行四邊形 則 ………2分
          平面,平面……3分//平面     ………4分
          (Ⅱ) 由已知得 ………5分
          由長方體的特征可知:平面 而平面, 則……6分
          ……7分   平面 ……8分   
          平面平面平面      ………9分
          (Ⅲ)四面體D1B1AC的體積
           ………12分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)如圖,在直三棱柱中,,,E上,且,分別為的中點.
          (1)求證:平面;
          (2)求異面直線所成的角;
          (3)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分14分)已知為平行四邊形,,,,是長方形,的中點,平面平面

          (Ⅰ)求證:;
          (Ⅱ)求直線與平面
             成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在長方體中,、分別是棱,

          上的點,,
          (1)  求異面直線所成角的余弦值;
          (2)  證明平面
          (3)  求二面角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四邊形ABCD是正方形,平面ABCD,MA//PB,PB=AB=2MA=2。
          (1)P、C、D、M四點是否在同一平面內(nèi),為什么?
          (2)求證:面PBD 面PAC;
            (3)求直線BD和平面PMD所成角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,,,點EPD上的點,且DEPE(0<1).     

          (Ⅰ) 求證:PBAC
          (Ⅱ) 求的值,使平面ACE
          (Ⅲ) 當(dāng)時,求二面角E-AC-B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題12分)如圖,斜三棱柱的底面是直角三角形,,點在底面上的射影恰好是的中點,且
          (Ⅰ)求證:平面平面;
          (Ⅱ)求證:;
          (Ⅲ)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          北緯圈上有A,B兩地分別是東經(jīng)和西經(jīng),若設(shè)地球半徑為R,則A, B的球面距離為
          A               B              C             D R

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知、、是直線,是平面,給出下列命題:①若,,則
          ②若,,則;③若,,則;④若,,則;⑤若異面,則至多有一條直線與都垂直.其中真命題是           .(把符合條件的序號都填上)

          查看答案和解析>>

          同步練習(xí)冊答案