設(shè)的導(dǎo)數(shù)為
,若函數(shù)
的圖像關(guān)于直
對(duì)稱,且
. (1)求實(shí)數(shù)
的值 ;(2)求函數(shù)
的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
,
.
(1)若在
存在極值,求
的取值范圍;
(2)若,問是否存在與曲線
和
都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù);
(1)若在
處取極值,求
的值;
(2)設(shè)直線和
將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個(gè)區(qū)域(不包括邊界),若
圖象恰好位于其中一個(gè)區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在
處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個(gè)極大值和一個(gè)極小值,且極大值與極小值的積為
,求
的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交3元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(
∈[7,11])時(shí),一年的銷售量為
萬(wàn)件.
(1)求分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)
的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)最大,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) (
R).
(1) 若,求函數(shù)
的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)
在區(qū)間
上有兩個(gè)零點(diǎn),若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)
處的切線為
,直線
與
軸相交于點(diǎn)
.若點(diǎn)
的縱坐標(biāo)恒小于1,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com