日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng).已知AD//BC, 百米, 百米,廣場(chǎng)入口P在AB上,且,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計(jì)),點(diǎn)M,N分別在邊AD,BC上(包含端點(diǎn)),區(qū)域擬建為跳舞健身廣場(chǎng), 區(qū)域擬建為兒童樂(lè)園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).

          (1)求綠化草坪面積的最大值;

          (2)現(xiàn)擬將兩條小路PNM,PN進(jìn)行不同風(fēng)格的美化,PM小路的美化費(fèi)用為每百米1萬(wàn)元,PN小路的美化費(fèi)用為每百米2萬(wàn)元,試確定M,N的位置,使得小路PM,PN的美化總費(fèi)用最低,并求出最小費(fèi)用.

          【答案】(1) 綠化草坪面積的最大值為平方百米;(2) 時(shí)總美化費(fèi)用最低為4萬(wàn)元.

          【解析】試題分析:(1)先求得

          ,再利用均值不等式求得正解;(2)先求得 ,

          總美化費(fèi)用為 ,再利用導(dǎo)數(shù)工具求得正解.

          試題解析:(1)在中, ,得,

          所以

          ,

          中, ,得

          所以

          所以綠化草坪面積

          又因?yàn)?/span>

          當(dāng)且當(dāng),即。此時(shí)

          所以綠化草坪面積的最大值為平方百米.

          (2)方法一:在中, ,得,

          ,

          中, ,得,

          所以總美化費(fèi)用為

          列表如下

          -

          0

          -

          單調(diào)遞減

          單調(diào)遞增

          所以當(dāng)時(shí),即時(shí)總美化費(fèi)用最低為4萬(wàn)元。

          方法二:在中, ,得,

          ,

          中, ,得,

          所以總美化費(fèi)用為

          所以,

          所以上是單調(diào)遞減

          所以當(dāng) 時(shí),即時(shí)總美化費(fèi)用最低為4萬(wàn)元。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)的內(nèi)角A,B,C的對(duì)邊分別為a,bc,,且B為鈍角,

          (1);(2)求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:

          該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

          (2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;

          (3)若有線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)(2)中所得線(xiàn)性回歸方程是否是理想?

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對(duì)任意的實(shí)數(shù)都成立,則稱(chēng)是一個(gè)特征函數(shù)則下列結(jié)論中正確的個(gè)數(shù)為( ).

          是常數(shù)函數(shù)中唯一的特征函數(shù)”;

          不是特征函數(shù)”;

          特征函數(shù)至少有一個(gè)零點(diǎn);

          是一個(gè)特征函數(shù)”;.

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列滿(mǎn)足,.

          (1)求

          (2)先猜想出的一個(gè)通項(xiàng)公式,再用數(shù)學(xué)歸納法證明你的猜想.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1當(dāng)時(shí),求的單調(diào)區(qū)間;

          2若對(duì),都有成立,求的取值范圍;

          3當(dāng)時(shí),求上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線(xiàn)l1的方程為3x+4y﹣12=0.

          (1)若直線(xiàn)l2與l1平行,且過(guò)點(diǎn)(﹣1,3),求直線(xiàn)l2的方程;

          (2)若直線(xiàn)l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線(xiàn)l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】桑基魚(yú)塘是某地一種獨(dú)具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開(kāi)發(fā)一個(gè);~(yú)塘項(xiàng)目,該項(xiàng)目準(zhǔn)備購(gòu)置一塊平方米的矩形地塊,中間挖成三個(gè)矩形池塘養(yǎng)魚(yú),挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹(shù),池塘周?chē)幕鶉鷮捑鶠?/span>米,如圖,設(shè)池塘所占總面積為平方米.

          Ⅰ)試用表示

          Ⅱ)當(dāng)取何值時(shí),才能使得最大?并求出的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,

          (2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,

          求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案