【題目】某縣為了幫助農(nóng)戶脫貧致富,鼓勵(lì)農(nóng)戶利用荒地山坡種植果樹,某農(nóng)戶考察了三種不同的果樹苗、
、
.經(jīng)過引種實(shí)驗(yàn)發(fā)現(xiàn),引種樹苗
的自然成活率為
,引種樹苗
、
的自然成活率均為
.
(1)任取樹苗、
、
各一棵,估計(jì)自然成活的棵數(shù)為
,求
的分布列及其數(shù)學(xué)期望;
(2)將(1)中的數(shù)學(xué)期望取得最大值時(shí)的值作為
種樹苗自然成活的概率.該農(nóng)戶決定引種
棵
種樹苗,引種后沒有自然成活的樹苗有
的樹苗可經(jīng)過人工栽培技術(shù)處理,處理后成活的概率為
,其余的樹苗不能成活.
①求一棵種樹苗最終成活的概率;
②若每棵樹苗引種最終成活可獲利元,不成活的每棵虧損
元,該農(nóng)戶為了獲利期望不低于
萬元,問至少要引種
種樹苗多少棵?
【答案】(1)分布列見解析,;(2)①
;②
棵.
【解析】
(1)根據(jù)題意得出隨機(jī)變量的可能取值有
、
、
、
,計(jì)算出隨機(jī)變量
在不同取值下的概率,可得出隨機(jī)變量
的分布列,進(jìn)而可求得隨機(jī)變量
的數(shù)學(xué)期望;
(2)①由(1)知當(dāng)時(shí),
最大,然后分一棵
種樹苗自然成活和非自然成活兩種情況,可求得所求事件的概率;
②記為
棵樹苗的成活棵數(shù),由題意可知
,利用二項(xiàng)分布的期望公式得出
,根據(jù)題意得出關(guān)于
的不等式,解出
的取值范圍即可得解.
(1)依題意,的所有可能值為
、
、
、
,
則,
,
,
.
所以,隨機(jī)變量的分布列為:
;
(2)由(1)知當(dāng)時(shí),
取得最大值.
①一棵種樹苗最終成活的概率為:
,
②記為
棵樹苗的成活棵數(shù),則
,
,
,
.
所以該農(nóng)戶至少要種植棵樹苗,才可獲利不低于
萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高為
米,它所占水平地面的長(zhǎng)
為
米.該廣告畫最高點(diǎn)
到地面的距離為
米,最低點(diǎn)
到地面距離
米.假設(shè)某人眼睛到腳底的距離
為
米,他豎直站在此電梯上觀看
視角為
.
(Ⅰ)設(shè)此人到直線的距離為
米,試用含
的表達(dá)式表示
;
(Ⅱ)此人到直線的距離為多少米時(shí),視角
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點(diǎn)分別為
過
的直線交橢圓于
兩點(diǎn),且
(1)若,求橢圓的標(biāo)準(zhǔn)方程
(2)若求橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求證:對(duì)于區(qū)間上任意兩個(gè)自變量的值
,都有
;
(Ⅲ)若過點(diǎn)可作曲線
的三條切線,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使得“對(duì)任意
恒成立”?若存在,求出
的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求
的分布列及
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)P(-4,0)的動(dòng)直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為
時(shí),
.
(1)求拋物線C的方程;
(2)設(shè)的中垂線在
軸上的截距為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)線性回歸方程,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;
③設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大.
以上錯(cuò)誤結(jié)論的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)絡(luò)外賣也開始成為不少人日常生活中重要的一部分,其中大學(xué)生更是頻頻使用網(wǎng)絡(luò)外賣服務(wù).市教育主管部門為掌握網(wǎng)絡(luò)外賣在該市各大學(xué)的發(fā)展情況,在某月從該市大學(xué)生中隨機(jī)調(diào)查了
人,并將這
人在本月的網(wǎng)絡(luò)外賣的消費(fèi)金額制成如下頻數(shù)分布表(已知每人每月網(wǎng)絡(luò)外賣消費(fèi)金額不超過
元):
消費(fèi)金額(單位:百元) | ||||||
頻數(shù) |
由頻數(shù)分布表可以認(rèn)為,該市大學(xué)生網(wǎng)絡(luò)外賣消費(fèi)金額
(單位:元)近似地服從正態(tài)分布
,其中
近似為樣本平均數(shù)
(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值,
).現(xiàn)從該市任取
名大學(xué)生,記其中網(wǎng)絡(luò)外賣消費(fèi)金額恰在
元至
元之間的人數(shù)為
,求
的數(shù)學(xué)期望;
市某大學(xué)后勤部為鼓勵(lì)大學(xué)生在食堂消費(fèi),特地給參與本次問卷調(diào)查的大學(xué)生每人發(fā)放價(jià)值
元的飯卡,并推出一檔“勇闖關(guān),送大獎(jiǎng)”的活動(dòng).規(guī)則是:在某張方格圖上標(biāo)有第
格、第
格、第
格、…、第
格共
個(gè)方格.棋子開始在第
格,然后擲一枚均勻的硬幣(已知硬幣出現(xiàn)正、反面的概率都是
,其中
),若擲出正面,將棋子向前移動(dòng)一格(從
到
),若擲出反面,則將棋子向前移動(dòng)兩格(從
到
).重復(fù)多次,若這枚棋子最終停在第
格,則認(rèn)為“闖關(guān)成功”,并贈(zèng)送
元充值飯卡;若這枚棋子最終停在第
格,則認(rèn)為“闖關(guān)失敗”,不再獲得其他獎(jiǎng)勵(lì),活動(dòng)結(jié)束.
①設(shè)棋子移到第格的概率為
,求證:當(dāng)
時(shí),
是等比數(shù)列;
②若某大學(xué)生參與這檔“闖關(guān)游戲”,試比較該大學(xué)生闖關(guān)成功與闖關(guān)失敗的概率大小,并說明理由.
參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com